Test Equipment Solutions Datasheet

Test Equipment Solutions Ltd specialise in the second user sale, rental and distribution of quality test & measurement (T&M) equipment. We stock all major equipment types such as spectrum analyzers, signal generators, oscilloscopes, power meters, logic analysers etc from all the major suppliers such as Agilent, Tektronix, Anritsu and Rohde & Schwarz.

We are focused at the professional end of the marketplace, primarily working with customers for whom high performance, quality and service are key, whilst realising the cost savings that second user equipment offers. As such, we fully test & refurbish equipment in our in-house, traceable Lab. Items are supplied with manuals, accessories and typically a full no-quibble 2 year warranty. Our staff have extensive backgrounds in T&M, totalling over 150 years of combined experience, which enables us to deliver industry-leading service and support. We endeavour to be customer focused in every way right down to the detail, such as offering free delivery on sales, covering the cost of warranty returns BOTH ways (plus supplying a loan unit, if available) and supplying a free business tool with every order.

As well as the headline benefit of cost saving, second user offers shorter lead times, higher reliability and multivendor solutions. Rental, of course, is ideal for shorter term needs and offers fast delivery, flexibility, try-before-you-buy, zero capital expenditure, lower risk and off balance sheet accounting. Both second user and rental improve the key business measure of Return On Capital Employed.

We are based near Heathrow Airport in the UK from where we supply test equipment worldwide. Our facility incorporates Sales, Support, Admin, Logistics and our own in-house Lab.

All products supplied by Test Equipment Solutions include:

- No-quibble parts & labour warranty (we provide transport for UK mainland addresses).
- Free loan equipment during warranty repair, if available.
- Full electrical, mechanical and safety refurbishment in our in-house Lab.
- Certificate of Conformance (calibration available on request).
- Manuals and accessories required for normal operation.
- Free insured delivery to your UK mainland address (sales).
- Support from our team of seasoned Test & Measurement engineers.
- ISO9001 quality assurance.

Test equipment Solutions Ltd Unit 8 Elder Way Waterside Drive Langley Berkshire SL3 6EP

T: +44 (0)1753 596000 F: +44 (0)1753 596001

Email: info@TestEquipmentHQ.com Web: www.TestEquipmentHQ.com

HF TEST RECEIVERS

field-strength

ESH 3

6

Test Receiver ♦ 9 kHz to 30 MHz

- -30^*) to $+137 \text{ dB}\mu\text{V}$
- Field-strength measurements in conjunction with test antennas
- Radio-interference (EMI) measurements to CISPR, VDE and FCC regulations
- Interference measurements to MIL and VG standards (model 56)

 Frequency-range extension down to 20 Hz when using model 56 with Spectrum Monitor EZM (model 56)

*) With Preamplifier ESH3-Z3: -37 dBV

IEC 625 Bus

The automatic **Test Receiver ESH 3** which measures and demodulates AM double-sideband, single-sideband, pulsemodulated and FM signals as well as interference in the range of 9 kHz to 30 MHz is suitable for manual programmed use as a

- field-strength meter in conjunction with the test antennas of the HFH 2
- selective RF voltmeter
 (in conjunction with a current probe, it can also measure RF currents)
- system unit in automatic test systems.

The ESH 3 has the same RF, IF and demodulator circuits as the ESH 2 (see preceding pages); it thus features the same excellent characteristics and covers the same fields of application. In addition, the ESH 3 is equipped with microcomputer circuitry and an evaluation unit, which make it a versatile, intelligent test receiver with a maximum of operating convenience.

Extended signal evaluation capabilities and **extra features** and **functions** characterize the ESH 3:

- Four selectable IF bandwidths: 0.2/0.5/2.4/10 kHz for model 52 and 0.2/1/2.4/10 kHz for model 56
- Average, peak and quasi-peak indication to CISPR 16 and VDE 0876 with programmable measuring times
- 75-MHz broadband IF output for panoramic display (Spectrum Monitor EZM) or spectrum Analyzer
- Digital level indication in selectable units
- Measurement of frequency offset, frequency deviation and modulation depth
- Automatic ranging (for low noise or low distortion) or presetting of RF and IF attenuation
- Frequency setting in programmed steps, eg 9-kHz channel pattern or for harmonic measurements

- Automatic scanning with data output to printers or recorders (XY, YT or radiomonitoring recorder)

Storage of last and nine additional device settings even when the unit is switched off or the supply interrupted

Automatic correction after calibration, ensuring full measurement accuracy at all frequencies, IF bandwidths, display modes and types of demodulation

Further characteristics, uses

The ESH 2 is ideal when only manual operation is required and portability and battery-power capability are wanted; the ESH 3 comes into its own when automation is needed to improve efficiency, when **computer** control is required and maximum versatility in terms of measurement functions is important.

In conjunction with the Test Receiver ESVP (page 300), signals and interference can be measured automatically in the range 9 kHz to 1 or 1.3 GHz in accordance with the relevant international regulations.

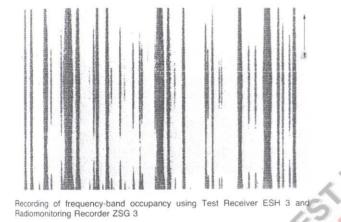
The antennas, the RF current probe, the probes and the artificial mains network available for the ESH 2 can also be used with the ESH 3.

Detective voltage measurement For use in the laboratory and test department for measurements on signal generators (level of fundamental, harmonics and non-harmonic signals, sideband noise, frequency deviation and modulation depth); twoport measurements (filter attenuation up to >100 dB, gain up to 57 dB) with automatic recording of frequency response with an XY recorder; amplifier measurements (frequency response, noise figure, overdrive capacity, intermodulation and crossmodulation characteristics).

Field strength measurement Propagation and coverage measurements are possible in conjunction with the rod, loop and probe antennas of the HFH 2 (page 300).

In radiomonitoring the ESH 3 can be used to measure: field strength and range of fluctuation of field strength with max./ min. indication, frequency (remote measurement with add-on frequency counter), frequency offset, frequency deviation and modulation depth.

292

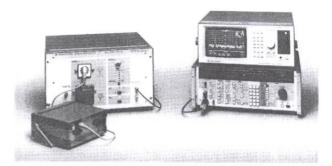

meters

HF TEST RECEIVERS

6

Data-logging capabilities in radiomonitoring

- 1. Output of all measured data to a printer via the IEC-bus interface with the ESH 3 in the talk-only mode.
- Recording of amplitude spectrum on a XY recorder. The values entered for start and stop frequencies and minimum and maximum levels determine the end values of the scales.
- 3. Long-term recording of frequency-band occupancy using the R&S Radiomonitoring Recorder ZSG 3. One ESH 3 permits up to five different frequency bands with different recording thresholds to be constantly observed and their occupancy to be recorded on five ZSG 3 recorders; see recording below.



Interlecence measurements In the field of interference measurements the ESH 3 offers considerable advantages over earlier test receivers, featuring programmable automatic frequency scanning and data logging with **direct control** of a printer or XY recorder. The following accessories are available for measuring interference voltages, currents and field strengths according to the relevant standards (CISPR, VDE, MIL, VG):

-	RF Current Probe	ESH 2-Z1
-	Active Probe	ESH 2-Z2
~	Passive Probe	ESH 2-Z3
-	Artificial Mains Network (four-wire system)	ESH 2-Z5
-	Pulse Limiter	ESH 3-Z2
	Preamplifier	ESH 3-Z3
	T-network	ESH 3-Z4
-	Two-line V-network	ESH 3-Z5
-	V-network 5 μ H 50 Ω	ESH 3-Z6
-	Loop Antenna	HFH 2-Z2
-	Inductive Probe	HFH 2-Z4
-	Rod Antenna (for MIL-STDs)	HFH 2-Z6
Ŧ	EMI Test Software	EZM-K1

The ESH 3 offers the following advantages for measuring interference:

- Bandwidth correction factor automatically taken into consideration when measuring pulse spectral density to MIL and VG standards; readout of measured data in dBµV/ MHz, dBµA/MHz and dBµV/m · MHz
- Indication modes and bandwidths for interference measurements according to MIL-STDs (also to draft for MIL-STD-462 B), DEF STAN 59-41 and VG standards

Automatic interference-voltage measurement with programmed phase-switching: Test Receiver ESH 3, Artificial Mains Network ESH 2-Z5, Spectrum Monitor FZM

- Frequency-range extension down to 20 Hz by combining model 56 with Spectrum Monitor EZM (model 56)
- Average-value indication with programmable integration time for measuring narrowband interference
- CISPR indication mode with determination of maximum value within programmed measuring time
- Programmable measuring times ensuring optimum adaptation of automatic measurements to time-dependent variations of the interference
- Automatic, frequency-dependent switching of quasipeak-value indication for CISPR band A (9 to 149.9 kHz) and band B (0.15 to 30 MHz)
- 60-dB operating range: ideal for measurements to MIL and VG standards

20-dB operating range: for measurements to CISPR, autoranging in consideration of CISPR settling times ensuring error free measurements

Selectable logarithmic frequency scale for data output on XY recorder, permitting direct recording of measured data on tolerance charts

Since the characteristic of broadband noise spectra is a continuous curve, frequency scanning in constant linear or logarithmic steps is possible and appropriate. Each single value, especially with CISPR weighting, is measured with due consideration of the overall settling time (charging and discharging time constant, time constant of low-pass filter simulating meter response).

Operation, functions

0

The front-panel **controls** of the ESH 3 are arranged for optimum clarity in spite of the multitude of functions, and logically organized according to frequeny, display mode, IF bandwidth, attenuation (sensitivity) and demodulation.

A 13-digit alphanumeric display facilitates data entry (frequencies, measuring times, limit levels) and reads out the measured results. In addition, the analog value of the input voltage is indicated within the limits of the demodulator operating range by a row of LEDs. Another LED row indicates the frequency offset.

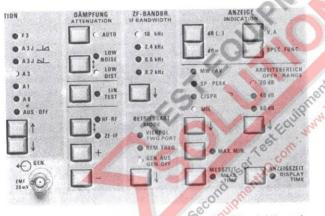
All active functions are indicated by LEDs. If major operating errors are made, or when a fault occurs in the main modules, an error message is issued with an error code. The end of long-term tests is indicated by a buzzer.

293

HF TEST RECEIVERS

field-strength

ESH 3


6

Frequency setting or frequency entry can be carried out in different ways:

- 1. with tuning knob in steps of 100 Hz or 10 kHz (quasi-continuous)
- at a keystroke in steps of any preset size, eg in 9-kHz steps, or in steps of the fundamental-frequency width to measure harmonics
- 3. by keyboard entry
- by automatic frequency scanning over up to five subranges, with any desired preset start and stop frequencies and step sizes.

Tuning is facilitated by a calibrated offset indication. The last, and nine further complete device settings can be stored.

Sensitivity, measurement ranges The voltage range in the average mode extends from -30 to +137 dBµV. Frequency offset is indicated – depending on IF bandwidth – from -5 to +5 kHz, frequency deviation from 0 to 5 kHz; modulation depth can be measured from 0 to 100% and gain from -110 to +57 dB.

Front-panel section with operating controls for indication, IF bandwidth, mode, attenuation and demodulation

Calibration Two different calibration processes are initiated depending on whether the calibration button is pressed for a shorter or longer period:

- Check and, if necessary, correction of level and frequency-offset calibration
- Measurement of all the calibration correction values that do not vary with time, for frequency response, IF bandwidth, logarithmic amplifier and detector – and storage in a non-volatile memory.

Output of results The measured value is converted into a level with or without logarithmic conversion; RF and IF attenuation, all correction values and transducer conversion factors – if applicable – are added and conveyed together with their physical unit to the alphanumeric display and the IEC-bus interface.

A 24-contact output permits the connection of three types of recorders XY, YT and radiomonitoring recorders. The ESH 3 automatically adjusts to the recorder type connected by selecting the required drive to the A/D converter.

The IEC-bus interface is provided with all the listener and talker capabilities covered in the standard: the limited capabilities of the widely commercial available controllers have, however, also been taken into consideration. For example, it is also possible to use computers without serial- and parallel-poll capability.

Computer control of the ESH 3 via the IEC bus provides the following capabilities:

- Execution of complex test programs
- Automatic evaluation of large quantities of data from various points of view
- Use of the ESH 3 together with other programmable measuring instruments.

Spe	cifica	tions				
Frequency range			1. qu in 2. ke 3. in 4. au 6 dig 100	1. quasicontinuous with Moo in steps of 100 Hz or 10 kHz 2. keyboard entry 3. in steps of any preset size 4. automatic scanning 6 digit LED display 100 Hz		
ZSWI Dscill	ator rel			50 Ω, BNC fe with RF atter with RF atter	emale connector nuation $\geq 10 \text{ dB}$	
nput	filter ²) e 1 mo	del 52: 9 to $<$	150 kHz, bandpa	iss filter		
	mo	del 56: 20 Hz	to <150 kHz, ba	ndpass filter	0 to <2 7 MHz	
3 4 5	2	00 to <200 k 00 to <280 k 80 to <390 k 90 to <540 k	Hz Hz Hz	112. 123. 135	0 to <2.7 MHz 7 to <3.7 MHz 7 to <5.2 MHz 2 to <7.2 MHz	
7 8 9	· · · · 0 · · · · 1 · · · · 1	40 to <750 k 75 to <1.05 .05 to <1.45 .45 to <2.0 M	MHz MHz* MHz	15 10	2 to <10 MHz 0 to <20 MHz 0 to <30 MHz*	
		ave titter 16	tracking filter)			
Maxi RF RF Inter	attenu attenu ferenc	put level with lation 0 dB \therefore lation ≥ 10 dE e immunity,	nn >110	00 dB tvp. 120	0 dB	
Maxi RF RF Inter	sub-oct mum ir attenu attenu ferenc e frequ iection linearit	put level with lation 0 dB iation ≥10 dE e immunity, lency rejectio ies: signal sp a) freque b) freque Signal- level		00 dB, typ. 120 00 dB, typ. 110 0 kHz to <150 kHz tz to 30 MHz Intercept p	UGB	
Maxi RF RF Inter Imag IF rej Non-	kub-oct mum in attenu attenu attenu ferenc jection linearit	put level with tation 0 dB itation ≥10 dE e immunity, iency rejectio ies: signal sp a) freque b) freque b) freque Signal- level dBμV 100	$\begin{array}{c} & 130\\ 3 & 137\\ \text{non-linearities}\\ n & >11\\ \text{acing } (d2, d_3) \geq 4\\ \text{incy range 9 kHz}\\ \text{incy range 9 kHz}\\ \text{intermod,}\\ \text{ratio}\\ \text{dB}\\ \hline \\ >52\end{array}$	00 dB, typ. 120 00 dB, typ. 110 0 kHz to < 150 kHz tz to 30 MHz Intercept guarantee dBm +45	point d typical dBm +50	
Maxi RF Inter Imag IF rej Non- Type	kub-oct mum in attenu attenu ferenc ie frequ jection linearit k ₂ d ₂	put level with action 0 dB action ≥10 dE e immunity, iency rejectio a) freque b) freque b) freque Signal- level dBμV	130 3 137 non-linearities n >11 Acing (d2, da) ≥4 Ancy range 9 kHz Intermod. ratio dB	00 dB, typ. 12 00 dB, typ. 11 0 kHz to <150 kHz Hz to 30 MHz Intercept p guarantee dBm	point d typical dBm	
Maxi RF Inter Imag IF rej Non- Type	kub-oct mum in attenu attenu attenu ferenc jection linearit	put level with lation 0 dB ation ≥10 dE e immunity, lency rejectio a) freque b) freque b) freque level dBµV 100 100	130 3 137 non-linearities n >11 acing (d2, d ₃) ≥4 incy range 9 kHz incy range 150 kH Intermod. ratio dB >52 >50	20 dB, typ. 120 00 dB, typ. 110 0 kHz to <150 kHz tz to 30 MHz Intercept (guarantee dBm +45 +43	point d typical dBm +50 +55	
Maxim RF RF Inter Imag IF re- Non- Type a) b) Cross Ar Pr atis D	sub-oct mum in attenu attenu ferencc e freque ection linearit k2 d2 d2 d3 k2 d2 d3 k2 d2 d3 k2 d2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k2 d3 k3 k2 d3 k3 k2 d3 k3 k2 d3 k3 k3 k3 k3 k3 k3 k3 k3 k3 k3 k3 k3 k3	put level with laation 0 dB attion ≥10 dE e immunity, tency rejectio b) freque b) freque b) freque b) freque dBμV 100 100 100 100 100 100 100 100 100 10	130 a 137 non-linearities 11 n >11 acing (d2, d3) ≥4 incy range 9 kHz incy range 150 kH Intermod. ratio dB >52 >50 >64 >77 >60 >64 >77 >60 >64 >77 >60 >64 >77 >60 >64 >77 >60 >64 smodulation of 2 >1 with	20 dB, typ. 124 20 dB, typ. 111 0 kHz to <150 kHz Intercept f guarantee dBm +45 +43 +15 +70 +55 +15 f = 1 kHz spa 0 dBμV	D dB point typical dBm +50 +55 +20 +90 +75 +20 xced >100 kHz a	
Maxii RF RF Inter Imag IF re Non- Type a) b) Cross Ar Pr at Shie D fie Rac	kub-oct attenu: attenu: attenu ferencc e freque linearit k2 d2 d3 k2 d2 d3 k2 d2 d3 k2 d3 ssmodu interferenc e freque linearit sites a level alding e freque interferenc sites a level alding sites a level alding sites allinearit sites allin allinearit sites allinearit sites allinearit sites alli	put level with laation 0 dB attion ≥10 dE e immunity, tency rejectio b) freque b) freque b) freque b) freque dBμV 100 100 100 100 100 100 100 100 100 10	$\begin{array}{c} & & & 130\\ 3 & & & 137\\ \text{non-linearities}\\ n & & & >11\\ & & & >1\\ acing (d2, d_3) \geq 4\\ uncy range 9 kHz\\ incy range 9 kHz\\ incy range 150 kH\\ Intermod.\\ ratio\\ dB\\ \hline \\ & >52\\ >50\\ >64\\ >77\\ >60\\ >64\\ >77\\ >60\\ >64\\ \\ s \modulation \ of 2\\ \\ s \modulation \ of 2\\$	20 dB, typ. 124 20 dB, typ. 111 0 kHz to <150 kHz Intercept f guarantee dBm +45 +43 +15 +70 +55 +15 f = 1 kHz spa 0 dBμV	boint bd typical dBm +50 +55 +20 +90 +75 +20 acced >100 kHz 3 https://www.sec.en/pices/sec.en/pices	

294

HF TEST RECEIVERS

6

meters

F bandwidths (average and peak van Nominal bandwidth	3-dB bandwidth	6-dB bandwidth 0%)	6:60 dB ratio
500 Hz (model 52) 1 kHz (model 56) 2.4 kHz 10 kHz 	. 160 Hz ⁴) . 550 Hz ⁴) . 800 Hz ⁴ . 2.4 kHz	200 Hz 630 Hz 1 kHz 2.6 kHz 9.5 kHz	approx. 1 : 5 approx. 1 : 5 approx. 1 : 2 approx. 1 : 1.8 approx. 1 : 2.4
urements to CISPR (Band A and Band B) and VDE 0875	. 0.2 kHz / 9 (automatic	kHz ally switched	over)
Noise indication a ($f_{in} > 50 \text{ kHz}$) Average value B = 200 Hz Peak value B = 200 Hz CISPR band A B = 200 Hz Spectral pulse density (MIL) Increase of noise indication	<-26 dB <- 6 dB	uV, typ30 uV, typ9 c (μV/MHz)	dΒμV iBμV
Increase of noise indication	dB a a 20-1 k		
	10- 10- Typ. 9	Guaranteed	f _{in} 50 kHz
Noise indication for com- bination of ESH3 (model 56) and Spectrum Monitor EZM (function RF/IF analysis of EZM with 10-Hz bandwidth)	dBµV 60 50 40 30 20 10 -10 -20	MANAN	Guaranteed value ypibai
Measurement ranges	-30 -40 002 0	06 0,1 0,2 0,4 0,6 1	2 4 6 10 kHz 30
Voltage Lower limit (3 dB above noise level) upper limit	for pulse	rnal noise 3μV; e spectra: ιV/10 kHz	is
Measurement error average, 20 dB	internal	vith V _{in} ≥16 d noise	and the second state
Frequency offset	IF band	5 kHz, deper width 5 kHz, depen	Ser S Planta Ph
AM modulation depth	IF band	width 2 to 100%	
Gain Indication of measured value	13-digi erical v for leve	t alphanumer alue and unit	ric display of num of measurement offset, deviction,
Level digital in dBμV etc in μV, mV etc analog	4 digits	etector, with).1 dB
Operating range of IF detecto Indicating modes	CISPI spect	, 60 dB ge, peak A (QP for ba ral density to min. levels o d of observati	MIL stand. ver preset
Frequency offset digital in kHz analog Frequency deviation in kHz Modulation depth in % Gain in dB	3 digi row 0 3 digi 2 digi	ts, resolution f 16 LEDs ts, resolution ts, resolution	10 Hz 10 Hz 1%
Types of demodulation		(A0, zero b (A1, 1-kHz (A3, double (A3J, LSB,	eat) beat note) e-sideband AM)
Outputs Generator (ref. voltage, can be switched off)	86 dl BNC	BμV ±0.5 dB female conn	; 50 Ω, ector
Connector for antenna supply and antenna coding AF signal, adjustable IF 75 MHz EMF			

dwidth ctor nds to IF ector hector on le connector male connec- male connec- antity recorder tputs, penlift for ZSKT, con- sted; 50 Ω EC 625-1, onnector; 1, T5, RL1, C0
rk to CISPR for index to CISPR for ionse male connector puts, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for onse rk to CISPR for onse male connector antity recorder tputs, penlift for ZSKT, con- sted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connector male connec- antity recorder tputs, penlift for ZSKT, con- sted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connector male connec- antity recorder tputs, penlift for ZSKT, con- sted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connec- entify recorder tputs, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connec- entify recorder tputs, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connec- ntity recorder tputs, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connec- antify recorder tputs, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connec- antify recorder tputs, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connec- antify recorder tputs, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
rk to CISPR for ionse male connec- antify recorder tputs, penlift for ZSKT, con- ted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
ionse male connec- antity recorder tputs, penlift for ZSKT, con- cted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
male connec- entify recorder tputs, penlift for ZSKT, con- ted: 50 Ω EC 625-1, onnector; 1, T5, RL1,
tputs, penlift for ZSKT, con- sted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
for ZSK1, con- sted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
sted; 50 Ω EC 625-1, onnector; 1, T5, RL1,
EC 625-1, onnector; 1, T5, RL1,
EC 625-1, onnector; 1, T5, RL1,
EC 625-1, onnector; 1, T5, RL1,
1, T5, RL1,
1, 15, RL1, 20
10%,
V TANIA A
V 4 mm, 25 kg
3
0
19.02
的計算
16.52
10.52
14月2日日 日日
110.52
19.53
Constant and a second second
)11.02
010.52
110.32
510.52
16.52 10.52 219.53 011.02 310.52 016.52 510.52 510.52 510.52
016.52
016.52 518.52
016.52 518.52 es):
016.52 518.52 es): 215.52 711.52
016.52 518.52 es); 215.52 711.52 e214.52
016.52 518.52 rs): 215.52 711.52 ;214.52 114.02
016.52 518.52 rs): 215.52 711.52 ;214.52 114.02
016.52 518.52 rs); 215.52 711.52 ;214.52 114.02 1016.52
016.52 518.52 rs): 215.52 711.52 ;214.52 114.02
016.52 518.52 is): 215.52 711.52 :214.52 114.02 i0016.52 2959.00
016.52 518.52 (s): 215.52 215.52 214.52 114.02 1016.52 2959.00
016.52 518.52 (s): 215.52 711.52 (214.52 114.02 (0016.52) 2959.00 section 10 512.02
016.52 518.52 (15): 215.52 214.52 114.02 1016.52 2959.00 section 10 512.02 512.03
016.52 518.52 (s): 215.52 711.52 (214.52 114.02 0016.52 (2959.00 section 10 512.02 512.03 (706.02
016.52 518.52 (15): 215.52 214.52 114.02 1016.52 2959.00 section 10 512.02 512.03 1706.02 1011.02
016.52 518.52 (s): 215.52 711.52 (214.52 114.02 0016.52 (2959.00 section 10 512.02 512.03 (706.02

Sinewave inverter for operating the ESH3 from a 12-V battery, such as SWR from Audiotechnik, Bad Salzuflen

For greater setting accuracies, the ESH3 has an input for an external reference frequency of 5 or 10 MHz.
 For extreme requirements, the HF Preselector FK 101 can be used (data sheet N 2-322).
 The accuracy is reduced when measuring sinewave signals at 200 Hz bandwidth (additional measuring error 1.5 dB) because the receiver is tuned in 100-Hz steps.
 ±20%,