EMISSIONS REFERENCE SOURCE

Serial number: 9999

USER GUIDE

Issue 3 October 2003

LAPLACE INSTRUMENTS LTD

3B, Middlebrook Way CROMER, Norfolk UK Tel: 01263 51 51 60 Fax: 01263 51 25 32

INDEX

1.0 Check list		Page 3
2.0 Introdu	uction	Page 4
3.0 ERS [Description	Page 5
4.0 Calibration		Page 5
5.0 Background		Page 6
6.0 Operation		Page 10
7.0 Application		Page 10
8.0 Direct connection		Page 13
Appendix I	Field types	Page 14
Appendix II	Reference data	Page 15

1.0 Check list

Items included with the shipment

Qty	Item
1	ERS main unit
1	Monopole antenna with BNC connector
1	Mains adaptor unit
1	Calibration sheets
1	Calibration data on CD ROM

Please check all items are present. If there are any discrepancies, please contact your supplier immediately.

2.0 INTRODUCTION

The standard technique specified for radiated emissions testing by most EMC standards is the measurement of radiated field strength, at a distance, on an Open Area Test Site (OATS).

It is well known that this technique suffers from high measurement uncertainty unless considerable investment is made in site preparation, configuration and calibration.

The ERS provides a means of substantially reducing this measurement uncertainty, even on very non-compliant test sites.

The ERS is a calibrated source of emissions. Its radiation at a distance of 3metres has been precisely measured by the leading test site in the UK, the National Physical Laboratory (NPL). By comparison between these results and results obtained on the user's test site, the errors associated with the users test site can be largely quantified. If done rigorously, this technique can provide a traceable reference back to a national standard with a measurement uncertainty approaching that of accredited test houses.

Note that the primary function of the ERS is the quantifying of specific measurement error which involves checking a specific measurement against the standard. This will be found to be a more relevant requirement for practical testing.

The ERS can also be used to check the characteristics of a test site. This mode is particularly relevant for screened, non-anechoic chambers. Room resonances, nodes and anti-nodes can be readily identified and quantified.

Not only is the ERS a means of quantifying errors due to test site, the complete measurement system (site, product, antenna, receiver/analyser) is effectively included in the calibration loop. This allows the use of lower cost equipment without reducing the integrity of results.

3.0 ERS Description

The ERS main unit contains a 2MHz, crystal derived source signal. This is applied to the antenna via a highly stable fast switching circuit to produce a comb generator output with a spacing of 2MHz. The antenna is a standard top loaded monopole with characteristics designed to radiate useful energy up to 1GHz. The plane of the resultant radiation is parallel to the axis of the antenna stem.

Rechargeable batteries are included in the ERS and a separate mains charger is provided.

In order to prevent use of the ERS with batteries too low to provide the correct level of output, a monitor is built in which will switch the output off if the battery voltage drops below a pre-determined level.

For storage when not in use or during transit, the main unit features a convenient antenna storage bay to protect the vunerable stem. Magnetic pads retain the antenna in the bay until required.

4.0 Calibration

In order to provide a low priced, yet traceable unit, individual ERS units are calibrated against master ERS units in an anechoic chamber. The master ERS units are fully calibrated on the NPL (National Physical Laboratory, Teddington) standard test site. This site has become one of the 'master' sites in Europe and the calibration of the ERS involves the absolutely 'correct' procedures and the most accurate instrumentation standards.

The conditions for the calibration are: Antenna - source (ERS) distance = 3 metres Measurement technique = height scanned antenna and peak hold resultant ERS height = 0.8 metres Polarisation = vertical and horizontal

Full details of the original calibration at NPL and the corrected calibration for your specific unit are enclosed at the rear of this guide in Appendix II

5.0 Background

The EMC standards define an Open Area Test Site as basically an area free of potential RF reflections, with a metallic ground plane and with an antenna which can be height scanned over the range 1 to 4 metres

Fig 1

Under this arrangement, the only reflection will be from the ground plane. With a metallic ground plane, as specified by the standards, this reflection will be maximised and will interfere with the direct path reflection as shown in fig 2.

If the path length difference is $\frac{1}{2}$ wavelength at a frequency of interest, the two signals will be 180° out of phase and will cancel. In fact the cancelation will not be total as the reflected wave, having travelled further, will have a lower amplitude than the direct path signal. However, on a 3 metre test site, the reduction in amplitude due to ground plane reflection will be over 15dB when Lr - Ld = $\frac{1}{2}$ wavelength.

This effect is shown graphically in fig 3.

Fig 2

ERS User manual

From this chart, it can be seen that, for instance, at 300MHz, if the antenna height is 2.5 metres, the measurement will be reading over 15dB low. At this frequency, the antenna height should be adjusted to 1 metre. Note that all the above applies to vertical polarisation only. With horizontal polarisation the reflection introduces an extra 180° phase shift which effectively 'inverts' the above chart. In order to overcome this problem of the 'interfering reflection', the standards specify that the antenna height (H) should be adjusted (or 'scanned') over a range of 1 to 4 metres whilst taking measurements and the peak levels recorded.

Bearing in mind the fact that this is all caused by just one reflector (the ground) the presence of other reflectors (nearby objects) would clearly cause considerable uncertainty! A worse case scenario would be a screened room. Resonances (standing waves) will be present in all 3 axes, creating hot and cold spots thoughout the chamber and making absolute measurement of emission level virtually impossible.

Other causes of measurement uncertainty are:

The presence of buildings, trees, bushes (almost anything) in the vicinity. Variation of ground plane reflectivity Antenna characteristics Instrumentation error Product configuration

If the test site is indoors, then nearby machinery, filing cabinets, metal tables, building structure, girders, RSJs, reinforcing rods, nearby staff, will all add to the equation.

Table 1 is an assessment of typical measurement uncertainties that may be encountered.

Site	Test House	Own site	Own site	Own site
Equipment	Top class	Top class	Low cost	Low cost
Cost	£100K	£30K	£4K	£5K
Test site	3	6	6	2
Antenna	1.5	2	3	0
Analyser	1	1.5	4	4
Total (Instr)	2.5	3.5	7	4
Total (Site+Instr.)	5.5	9.5	13	6
Product configtn	4	4	4	4
Total overall	9.5	13.5	17	10
Note	1	2	3	4

Table 1. Measurement uncertainties

Notes: 1. NAMAS accredited site

- 2. Uncalibrated test site (approximate OATS) and tuned receiver
- 3. Uncalibrated test site (approximate OATS) and spectrum analyser
- 4. As 3. With the addition of an emissions reference source.

General notes: (a) Assume ground plane effect eliminated (by technique or absence) (b) Test house figures and instrumentation figures derived from published figures.

(c) Product configuration and own test site errors will vary widely depending on product type and circumstances, and may be considerably larger.

The benefit of using the ERS becomes obvious. Note that the complete measurement system (test site + ground plane + reflections + antenna + instrumentation is all inside the calibration loop with the result that the total (Site + Instr.) error is dramatically reduced.

When used as described below, the ERS also takes into account the test site distortion due to any short term variables, such as weather conditions (outdoor sites) and room configuration for indoor sites.

6.0 Operating notes

6.1 Battery

Prior to using the ERS, ensure the batteries are fully charged. If in doubt, connect the battery charger to the charging socket and charge for 8 or more hours. The charging rate is set for trickle charging and so the charger may be left on for extended periods without damaging the battery.

Do not use the ERS with the battery charger connected.

Battery operating duration is 2.5 hours. Note that when new, the batteries will need charging and may need to be cycled 2 or 3 times before achieving full capacity. To maintain good battery capacity, observe good

battery operation practices to avoid memory effect. (le always fully discharge before recharging)

6.2 Operation

To operate the ERS, first install the antenna. This is retained in storage by magnetic pads on the side of the unit and will simply pull away. Connect it to the BNC socket on the top of the unit.

The output is switched on by pressing the push button switch to show a green indicator. Correct operation is confirmed by the green LED indicator.

If the green LED extinguishes whilst the switch is ON, the batteries have become discharged and the unit has automatically switched off.

7.0 Application

7.1 Measurement correlation

This technique checks the measurement error associated with a specific measurement. It provides the highest possible level of integrity .

<u>STEP 1</u>

Prepare your test site and install the EUT. Use your measurement system as normal to detect any emissions from the EUT. The results are shown in STEP 1 as an example (assuming vertical polarisation) As can be seen, an emission peak has been detected and measured.

However, at this stage we have no means of quantifying the accuracy or integrity of this measurement.

In order to gain an accurate check with the ERS, it must be located as close as possible to the source of the 120MHz signal. If the EUT is small and isolated, this next step will not be required.

STEP 2

Locate the source as accurately as possible. Note that this may not correspond to the location of the highest readings from the near field probe. See Appendix 1 'Near field vs Far Field'.

<u>STEP 3</u>

Remove the EUT and locate the ERS as close as possible to the position of the source. Position it with the antenna stem vertical for vertical polaristion

Switch the ERS on.

Measure the amplitude of the ERS emission line nearest the frequency under investigation. The lines are nominally 2MHz apart so the nearest one must be within 1MHz.

Compare the measured amplitude with the ERS reference plot or tabulated list (Appendix II) for the corresponding polarisation and frequency. If the site, antenna height, conditions, procedures and instrumentation were perfect, (ie matched the NPL site) the amplitude would match that on the reference plot. Generally there will be a discrepancy which will be due to these factors. This discrepancy is the correction factor to be applied to the original measurement. By applying this factor, the measurement is being 'normalised' to correlate with an NPL measurement.

Repeat for horizontal polarisation from step 1 but use the ERS on its side with the antenna stem horizontal and normal to the direction of the receiving antenna. Use the horizontal calibration plots in Appendix II

Horizontal polarised receiving antenna

Horizontally polarised ERS with antenna stem normal to direction of receiving antenna

7.2 Test Site Calibration

This technique provides a complete overview of the characteristics of a test site ... antenna ... instrumentation installation. The result is a quantitative comparison between the users site and an ideal site (NPL).

Note that in the case of screened rooms (non-anechoic) the location of the ERS and the antenna will be critical. In small rooms slight movement of either could have significant effects on the results. On open air sites, ground conditions may affect the site calibration, therefore calibration should be done each time the site is used.

- 1. Locate the ERS at the intended position of the EUT.
- 2. Measure the emissions from the ERS using your normal procedures.
- 3. By correlation of the ERS calibration plots and the plots obtained in step 2 a correction curve can be derived. This may be done by manual observation or by using a spreadsheet or similar in a PC (if the instrumentation allows this).

8.0 Direct Connection

An output can be taken from the ERS by directly connecting a BNC co-ax lead to the output socket. This will provide an uncalibrated output level from 2MHz to over 1GHz. This can be used, for instance, for insertion loss measurements.

Note that the output is not matched to 50ohm and therefore an impedance mismatch will occur when connected to 50 or 75ohm cables. This will result in strong peaks and dips in the output signal spectrum due to reflections. This direct output is not calibrated.

APPENDIX 1

Near field vs Far field

Take the case of an alternating current passing down a wire. This current will create a magnetic field round the wire, which must also alternate in direction. This continual reversal of magnetic fields consumes energy, the more times per second the field is reversed, the more energy is consumed. This energy 'leaks' away from the wire as an alternating magnetic field. If this field crossed a conductor, a voltage would be created along the conductor. In fact, if this field simply passed through space, a voltage is created in space. This voltage would depend on the impedance of 'space'. This impedance is 377ohm (the impedance of free space) and results in a given voltage for a given magnetic field. Therefore, as the original magnetic field created by the alternating current disperses into space, it creates a matching voltage field and the radiation acquires a 'free space' form. This change occurs gradually but it is generally accepted that the nominal transition point occurs at about ½ wavelength. In free space, the energy alternates between magnetic and electric field components.

The standards require the measurement of interference at a distance. This is measurement of the far field radiation which be a function of two factors:

the source (S) = strength (power) of the source

the aerial (A) = efficiency of the aerial.

The aerial is the conductor which radiates the energy produced by the source. Essentially, emission level = S * A

ie. The measured far field radiation level is related to S times A

The (very) near field level as measured by a near field probe is simply related to S.

So a strong source connected to a poor 'aerial' will generally not produce strong emissions, whilst a weak source connected to a ¼ wavelength conductor will radiate plenty.

For example, if the source is a microprocessor chip, the near field probe may pick up a very high 120MHz signal immediately adjacent to it. However, due to the small physical size of a chip, it is unlikely to be the 'radiating' element. To radiate energy, we need an aerial.

Aerials need a certain length in order to work effectively. Conventionally they need to be approaching ¼ wavelength long but measureable radiation may be emitted from conductors significantly shorter than this if the source is strong. So if tracking the source of emissions, find a conductor (cable, PCB track, ribbon cable) that has evidence of the 120MHz signal on it. Even if the signal is weak, if the conductor is long, it is likely that the true source of the emissions is that conductor.

ERS User manual

APPENDIX II

Reference data

The following information is enclosed:

Calibration plots from NPL for the master ERS. (a) Vertical polarisation (b) Horizontal polarisation

Calibration plots for your ERS

(a) Vertical polarisation

(b) Horizontal polarisation

Tabulated results for your ERS.

(a) Vertical polarisation

(b) Horizontal polarisation

All plots referenced to 3 metres antenna - ERS distance.

Note that a copy of the calibration data can be obtained on CD in SDF format (ASCII, comma delimited). Contact your supplier for ordering details.

Calibration data

Calibration data

ERS calibration data

Serial number	9999
Master serial number	1288
Master calibration date	19.10.2007

Calibration valid from

All data referred to 3m test distance

Frequency	Horizontal	Vertical
MHz	dBuV/m	dBuV/m
30	43.53	53.26
32	39.56	49.76
34	40.58	50.59
36	41.59	50.39
38	42.16	51.36
40	42.57	50.37
42	42.83	49.45
44	44.55	50.15
46	43.77	51.00
48	45.21	53.26
50	47.38	54.50
52	46.54	54.21
54	47.87	54.46
56	49.00	54.43
58	49.62	54.67
60	49.20	54.80
62	49.13	54.25
64	51.10	54.96
66	53.00	54.94
68	52.55	55.19
70	53.99	56.77
72	53.04	55.76
74	54.25	55.83
76	53.59	56.91
78	55.22	57.06
80	55.97	57.62
82	56.45	57.00
84	57.01	57.30
86	57.08	57.00
88	58.92	56.47
90	57.75	57.00
92	58.08	58.00
94	58.71	58.00
96	58.94	60.00
98	59.83	59.00
100	58.98	58.00
102	60.40 E0.41	60.00
104	59.41	60.00 E0.00
100	60.04	59.00
100	60.63	60.14
110	61.09	60.22
114	60.58	60.23
116	61.88	60.67
118	60.20	60.07
120	61 50	61.00
120	61 50	61.00
124	61 44	61.00
126	62.06	61.00

128	63.00	61.00
130	61.85	61.00
132	62.54	60.00
134	62.35	61.00
136	63.30	62.00
138	63.00	62.00
140	62.89	62.00
142	63.87	62.00
144	64.41	60.50
146	63.88	61.77
148	64.22	62.02
150	65.29	62.17
152	65.79	62.37
154	63.85	61.00
156	63.82	62.08
158	65.62	62.50
160	64.93	61.65
102		62.20
164	66 70	62.40
168	66 91	62.00
170	67 10	62.00
172	67.15	62.00
174	67.34	63.09
176	67.87	63.16
178	67.05	62.62
180	67.41	63.43
182	68.71	62.78
184	67.76	63.36
186	68.72	62.08
188	68.73	62.95
190	67.84	62.79
192	69.29	63.65
194	09.00 70.12	62.03
190	70.13	63 30
200	71.22	65.87
202	71.17	65.82
204	71.15	65.66
206	71.22	65.74
208	70.50	65.60
210	70.84	65.72
212	72.17	64.89
214	71.39	66.05
216	72.47	66.19
218	71.45	67.00
220	71.35	65.38
222	72.51	67.00
224	72.10	67.00 67.00
220	73.32	67.00
220	72.00	66.96
232	73.90	67.16
234	72.93	67.57
236	73.94	68.74
238	73.97	68.95
240	74.12	69.24
242	74.51	69.73
244	75.00	70.06
246	75.18	70.43
248	75.42	69.79
250	/5.43	70.92
252	/ 5.4U 75.41	72.01
204	75.51	71.1Z
258	75.77	72.20
260	76.15	72.06

262	76.44	71.42
264	76 61	70 64
204	70.01	72.04
266	76.64	72.93
268	77 49	73 05
200	77.04	70.04
270	77.34	73.04
272	76.31	73.07
274	76 39	73 12
070	70.00	70.12
276	76.60	13.33
278	76.81	72.65
280	75 80	72.07
200	75.09	12.91
282	76.88	74.18
284	74.68	74.15
296	77.26	72.02
200	77.50	75.95
288	77.15	73.77
290	77.12	73.74
202	77 28	7/ 80
232		74.03
294	77.57	74.19
296	76.71	74.48
209	75 71	74 69
290	75.71	74.00
300	76.56	74.66
302	76.25	75.38
204	75.04	72.05
304	75.94	73.95
306	76.88	74.85
308	76.10	75.14
210	75 45	75 50
310	75.45	75.56
312	76.70	74.87
314	76.62	74.85
216	76.32	74.70
310	70.38	74.70
318	75.97	74.44
320	75 44	75.08
020	70.44	70.00
322	76.17	75.00
324	75.28	74.22
326	75.45	74.56
200	74.50	74.07
328	74.59	74.87
330	74.69	75.14
332	74 30	74 83
002	74.00	74.00
334	74.76	75.40
336	74.29	75.10
338	74 04	74 94
240	74.04	75.40
340	74.18	75.19
342	75.09	74.66
344	73 87	75.05
240	73.04	75.00
346	73.84	75.13
348	73.47	74.97
350	73 79	74 41
250	74.02	74.90
352	74.02	74.82
354	72.74	74.71
356	72,78	73.92
259	72.05	72.20
308	73.25	13.30
360	72.67	73.74
362	72,70	73.67
264	70.44	74.00
304	72.44	74.30
366	72.96	73.88
368	73 42	74 32
270	72.04	74 47
370	73.21	74.17
372	72.67	73.56
374	72.24	74,13
376	72.58	72 57
5/0	12.30	13.51
378	72.79	73.81
380	73.41	74.48
202	70.79	74 04
302	12.10	74.01
384	73.21	74.48
386	73.11	74.42
200	72 52	72.00
300	13.32	13.00
390	72.20	74.50
392	72.98	74.46
204	72 15	74 46
034	15.15	14.40

396	72 52	73 96
000	72.02	70.00
398	73.90	75.42
400	73 32	74 88
100	70.02	71.00
402	73.23	73.89
404	72.72	74.44
101	70.00	74.44
406	12.32	74.14
408	72.76	74.61
110	74.70	70.00
410	74.78	73.68
412	73 20	75 24
	70.20	75.21
414	72.49	75.60
416	72.90	76.13
110	70.00	74.40
418	13.33	74.13
420	73.23	75.58
400	70.00	74.20
422	12.89	74.30
424	72.20	74.60
126	72.04	74 50
420	72.04	74.50
428	72.66	75.16
120	72.00	75 56
430	73.00	75.50
432	72.38	76.05
131	72 30	76 11
404	72.00	70.11
436	72.83	75.56
438	72 37	75 13
400	72.07	75.15
440	71.93	74.71
442	71 77	75 48
442		75.40
444	72.35	75.05
446	72 83	76 46
110	72.00	70.40
448	73.36	76.09
450	73.35	77 00
100	70.00	77.00
452	72.70	76.28
454	72.22	74.76
150	74.30	75.40
456	/1./2	75.18
458	71.94	74.24
460	74.65	74.00
460	C0.17	74.99
462	73.19	75.58
404	70.74	77.40
404	73.74	11.19
466	73.59	77.17
169	72.05	71 51
400	72.95	74.04
470	71.46	74.09
172	71.00	75 51
472	71.90	75.51
474	72.05	75.65
176	72 02	76 / 8
470	12.52	70.40
478	73.71	77.48
480	74 15	77 93
100	74.10	77.50
482	74.18	76.51
484	74 48	76 64
101	70.40	70.01
486	73.40	76.08
488	72.06	73.53
400	70.00	72.60
490	12.22	13.00
492	73.12	74.43
101	72 91	75.00
494	73.01	75.99
496	72.98	76.23
108	73 73	76 84
450	70.70	70.04
500	73.74	75.89
502	73.81	75 67
502	70.01	70.07
504	72.21	72.97
506	72.66	74.35
500	70.00	75.00
800	12.89	12.69
510	72.81	75.56
F10	74 54	75.00
512	/ 4.54	15.90
514	73.79	76.56
E10	72.02	75.00
סוט	13.03	10.00
518	74.00	75.65
520	72 07	72 62
520	12.31	13.03
522	72.50	73.98
524	72 42	73 65
524	12.42	73.00
526	74.11	75.32
528	73 79	75.82
020	10.10	10.02

530	74.28	75.14
522	72 /6	72 1 4
552	73.40	73.14
534	73.67	73.58
536	74.02	73.76
500	70.50	70.40
538	73.53	73.46
540	72.57	74.90
542	74 44	75 76
544	74.00	75.40
544	74.89	75.16
546	73.24	74.57
548	74.06	75 / 8
540	74.00	73.40
550	73.93	74.04
552	73.00	73.52
554	72 /8	72 76
554	72.40	72.70
556	72.67	72.72
558	73.83	73.17
560	73 40	73 37
500	75.49	75.57
562	73.82	72.54
564	74.18	71.97
566	71.09	71 92
500	71.90	71.02
568	72.87	71.37
570	72.28	71.92
570	70.66	71.06
572	72.00	71.90
574	72.98	73.07
576	75.07	72.12
E79	74.44	72.66
576	74.41	72.00
580	74.73	74.00
582	73.49	72.50
E94	72.09	71.00
564	72.96	71.09
586	72.51	71.53
588	72,79	71.57
500	72 54	72.16
590	75.54	72.10
592	72.98	71.39
594	73.22	71.54
506	71 70	70.11
590	71.78	70.11
598	71.02	70.42
600	71.77	71.19
602	70.00	60.72
002	12.33	09.75
604	71.68	71.89
606	73.10	71.06
609	72.02	70.74
000	73.03	70.74
610	72.24	71.87
612	72.60	71.22
614	72.62	71.25
014	12.02	71.25
616	73.16	69.85
618	71.80	69.44
620	72.18	60 74
020	72.10	03.74
622	72.07	70.47
624	71.63	70.81
626	72 90	69 92
020	72.30	00.02
628	71.03	70.40
630	71.68	69.31
632	72.00	70 17
002	72.00	70.17 CO.00
634	71.68	68.89
636	71.09	69.35
638	71 11	70 38
000	70.04	70.00
640	70.61	69.91
642	70.60	69.93
644	70.62	70.02
C1C	74 47	70.74
040	71.17	70.71
648	71.54	70.30
650	71 46	69 20
650	74.44	60.05
200	71.11	69.85
654	70.36	70.01
656	71 10	69 59
659	70.20	60.00
000	10.20	09.03
660	71.04	70.41
662	70.44	68,90

664	71.71	69.33
666	60.7E	60 E /
000	69.75	00.04
668	71.76	69.29
670	71 00	69 60
070	11.22	00.00
672	71.90	69.16
674	70.04	70.07
074	70.94	10.01
676	70.49	69.49
679	71 40	70 75
078	71.40	10.15
680	72.10	70.55
690	71 50	60 61
002	71.30	00.04
684	70.71	68.66
696	70.00	69.04
000	10.22	00.04
688	70.82	68.64
600	60.72	60.26
090	09.75	09.20
692	70.23	68.44
694	70 /3	68 30
094	70.43	00.59
696	71.19	68.33
608	71 74	69.96
090	/1./4	00.00
700	71.83	68.02
702	70.22	67 22
702	10.22	07.23
704	69.88	67.54
706	60 77	66 00
700	03.77	00.30
708	70.28	68.12
710	71 20	67 15
710	11.25	07.10
712	71.94	68.73
714	71 31	68 44
714	71.51	00.44
716	70.35	66.35
718	69 72	66 58
710	00.12	00.00
720	69.23	66.76
700	69 97	67 11
	00.01	07.11
724	68.21	65.04
726	67 92	63 41
720	01.02	00.41
728	68.11	64.73
730	67 22	64 23
700	01.22	04.20
732	66.19	64.26
734	66 51	65 26
704	00.01	00.20
736	66.79	64.31
738	66.38	63 69
740	04.00	00.00
740	64.29	62.68
742	63.01	63.00
744	64.44	64.20
744	64.11	64.39
746	63.90	62.75
749	63.03	60.60
740	63.03	02.00
750	63.01	61.63
750	60.04	62.66
752	02.34	02.00
754	62.95	62.06
756	62.22	62.06
750	02.22	02.00
758	62.24	61.18
760	62 33	61 48
700	02.00	01.10
762	63.10	60.94
764	62.93	60.82
700	02.00	00.02
766	62.08	60.87
768	61.51	62.17
770	CO 04	04.00
770	62.04	61.39
772	60.46	60.47
774	60 F2	50.62
//4	60.55	59.65
776	61.66	60.08
778	62 14	50 71
	02.14	53.11
780	62.03	60.48
782	61.04	50 44
102	01.04	59.44
784	60.56	59.56
786	60.93	50 01
700		55.51
788	62.11	59.51
790	63 11	56 97
	00.11	55.57
792	63.62	57.99
794	64.52	59.44
700	C1.4C	50.44
190	04.40	59.40

798	63.46	58.40
800	63.26	59 10
000	60.20	50.04
802	63.73	58.61
804	64.35	58.47
806	65 25	58 10
800	05.25	56.19
808	65.33	58.08
810	63 52	58 30
010	63.06	57.00
612	62.90	57.93
814	62.71	59.34
816	63.45	57 45
010	00.40	57.45
818	62.94	57.43
820	63.05	57.17
922	62 20	56 60
022	03.30	50.00
824	61.83	56.46
826	61.47	57.30
828	60.27	57 40
020	00.27	57.40
830	60.16	57.38
832	58.90	56.47
834	58 55	56 31
000	50.00	57.00
830	58.80	57.28
838	59.19	55.35
840	59 51	54 64
040	E9.44	5F 44
642	58.44	55.44
844	56.79	54.36
846	56 89	55 51
010	E6 36	54.60
040	50.50	54.60
850	56.38	53.49
852	58.17	53.10
954	59 62	52 17
004	56.02	52.17
856	59.25	52.37
858	59.21	53.06
860	50 38	53 /1
000	59.50	50.41
862	58.56	53.22
864	58.67	52.61
866	58 65	52 77
000	50.05 60.09	52.77
808	60.08	51.30
870	61.54	51.42
872	61.98	51.69
074	62.09	E2 EE
874	62.08	53.55
876	60.43	52.66
878	59.35	53.71
990	E0.27	56.26
000	59.27	50.20
882	59.28	56.26
884	60.99	55.57
996	50.00	51 A 5
000	59.99	54.45
888	60.71	54.10
890	60.61	55.18
892	59 72	56.33
884	50.05	54.00
894	59.85	54.92
896	58.77	54.80
898	59 94	55 00
000	E8.09	E4.0E
900	58.98	54.65
902	58.58	56.66
904	59.29	57.02
006	50.10	56 11
900	59.19	50.11
908	57.86	55.32
910	57.45	55.67
912	56.07	54 75
014	EC 14	54.10 EE 00
914	30.14	55.08
916	56.93	55.18
918	56.90	54,29
920	57 47	5/ 00
320	51.41	04.90
922	56.27	54.19
924	56.20	54.87
926	56.00	55 00
029	EZ 00	50.00
920	57.00	00.00
930	57.00	54.46

932	56.00	56.50
934	57.29	54.28
936	57.00	53.39
938	58.00	54.06
940	57.00	54.29
942	54.50	53.97
944	55.50	54.10
946	56.00	54.00
948	54.50	55.56
950	55.00	54.00
952	57.00	53.38
954	58.00	52.49
956	56.00	51.16
958	56.00	52.39
960	54.00	52.07
962	54.81	52.00
964	53.80	51.09
966	53.74	48.37
968	54.29	48.43
970	53.44	50.65
972	52.83	52.35
974	52.16	51.40
976	51.37	51.67
978	49.89	50.27
980	50.95	51.03
982	50.64	50.55
984	49.85	51.51
986	50.64	52.56
988	51.96	53.16
990	52.42	53.56
992	51.39	54.04
994	51.23	53.91
996	52.10	53.62
998	51.21	54.02
1000	51.21	54.02
	9999.00	9999.00