(Revised January 152009)

INSTRUCTION MANUAL MODEL 4200-S / 21 RF MICROWATTMETER

SERIAL NUMBERS 975 AND ABOVE

ELECTRONICS CORPORATION

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation and maintenance of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design. manufacture, and intended use of the instrument. Boonton Electronics assumes no liability for the customer's failure to comply with these requirements.

THE INSTRUMENT MUST BE GROUNDED

To minimize shock hazard the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three conductor, three prong a.c. power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to a two-contact adapter with the (green) grounding wire firmly connected to an electrical ground at the power outlet.

DO NOT OPERATE THE INSTRUMENT IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by quailfied maintenance personnel. Do not replace components with the power cable connected. Under certain conditions dangerous voltages may exist even though the power cable was removed. therefore: always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person. capable of rendering.first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.
Do not install substitute parts or perform any unauthorized modification of the insturment: Return the instrument to Boonton Electronics for repair to ensure that the safety features are maintained.

SAFETY SYMBOLS.

This safety requirement symbol (located on the rear panel) has been adopted by the International Electrotechnical Commission. Document 66 (Central Office) 3. Para-
 graph 5.3. which directs that and instrument be so labeled if. for the correct use of the instrument. it is necessary to refer to the instruction manual. In this case it is recommended that reference be made to the instruction manual when connecting the instrument to the proper power source. Verify that the correct fuse is installed for the power available, and that the switch on the rear panel is set to the applicable operating voltage.

The CAUTION sign denotes a hazard. It calls attention to an operation procedure. practice. or the like. which. if not correctly performed or adhered to. could result in damage to or destruction of part or all of the equipment. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

WARNING
The WARNING sign denotes a hazard. It calls attention to an operation procedure. practice, or the like. which, if not correctly periormed or adhered to. could result in injury or loss of life. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

Indicates dangerous voltages.

TABLE OF CONTENTS

SECTION I - INTRODUCTION

Paragraph Page
1-I Introduction 1-1
1-3 Description 1-1
1-7 Accessories 1-2
1-11 Options 1-2
1-15 Specifications $1-3$
1-17 Outline Dimensions 1-3
SECTION II - INSTALLATION
Paragraph Page
2-1 Introduction 2-1
2-3 Installation 2-1
2-4 Unpacking $2-1$
2-5 Mounting 2-1
2-6 Power Requirements $2-1$
2-7 Cable Connections 2-1
SECTION III - OPERATION
Paragraph Page
3-1 Introduction 3-1
3-3 Operating Controls. Indicators and Connectors 3-1
3-5 Sensor Calibration Data 3-1
3-7 Power Application 3-1
3-9 Preliminary Checkout 3-1
3-11 Operating Instructions 3-5
3-12 Measurement Parameters 3-5
3-13 Use of Numerical Keys 3-5
3-14 SELECT Function 3-5
3-15 MODE Selection 3-6
3-16 RANGE Selection 3-6
3-17 LIMITS dB Selection 3-6
3-18 CAL FACTOR Selection 3-6
3-19 REF LEVEL dB Selection 3-7
3-20 Entry Limits 3-7
3-21 Recall of Entered Values 3-7
3-22 Zeroing the Instrument 3-8
3-23 Calibrating the Instrument 3-8
3-24 Error Messages 3-9
3-25 Measurements 3-9
3-26 Making Power Measurements 3-9
3-27 Low-Level Measurements 3-9
3-28 High-Level Measurements 3-9
3-29 High-Frequency Measurements 3-9
3-30 Temperature Effects 3-9
3-31 SWR Measurements 3-9
3-32 Shielding Recommendations 3-11
3-33 Analog Output 3-11
3-34 Minimum Performance Standards 3-12
3-35 Test Equipment Required 3-12
3-36 Preliminary Setup 3-12
3-37 Automatic Zero Function Test 3-12
3-38 Autoranging Mode Test 3-12
3-39 Range Hold Function Test 3-12
3-40 Basic Instrument Accuracy Test 3-13
3-41 Power Mode Test 3-13
3-42 Calibration Test 3-13

SECTION III - OPERATION (Cont.)

Paragraph Page
3-43 Sensor Selection Test 3-14
3-44 dB Reference Level Function Test 3-14
3-45 dB Limit Test 3-14
3-46 Calibration Factor Test 3-14
SECTION IV - THEORY OF OPERATION
Paragraph Page
4-1 Introduction $4-1$
4-4 Overall Block Diagram 4-1
4-5 Sensor $4-1$
4-6 Input Module $4-1$
4-7 Control Module 4-1
4-8 Display Module 4-1
4-9 Power Reference 4-1
4-10 Power Supply Module 4-1
4-11 Optional Modules $4-1$
4-12 Detailed Theory of Operation. Sensor Circuits $4-2$
4-15 Detailed Theory of Operation. Input P.C. Board Circuits $4-2$
4-26 Detailed Theory of Operation. Control P.C. Board 4-4
4-34 Detailed Theory of Operation. Display P.C. Board 4-10
4-41 Detailed Theory of Operation. Power Reference P.C. Board 4-10
4-44 Detailed Theory of Operation, Power Supply P.C. Board 4-13
SECTION V • MAINTENANCE
Paragraph Page
5.1 Introduction 5-1
5-3 Safety Requirements 5-1
5-5 Test Equipment Required 5-1
5-7 Troubleshooting Concept 5-1
5-9 Signarure Analysis 5-1
5-15 Trouble Localization 5-2
5-16 Gaining Access to Internal Component 5-2
5-17 Visual Inspection 5-2
5-18 Use of Block Diagrams 5-2
5-19 Systematic Troubleshooting 5-2
5-20 Signature Analysis Free-Running Test Procedures 5-3
5-22 Signature Analysis Programmed Test Procedures 5-3
5-24 Non-Volatile RAM Circuit Tests 5-10
5-25 Non-Volatile RAM Test 5-10
5-26 Non-Volatile RAM Cell Test 5-17
5-27 Non-Volatile RAM Cell Replacement 5-17
5-28 Instrument Adjustments 5-18
5-29 General 5-18
5-30 Power Supply Adjustments 5-18
5-31 Input Module Adjustments 5-18
5-32 DC Calibration 5-20
5-33 AC Calibration 5-21
5-34 Display Board Recorder Output Adjustment 5-22
5-35 Power Reference Adjustment 5-25
5-36 Entry of Sensor Calibration Factors Versus Frequency 5-25
5-37 Sensor Calibration 5-26
5-38 General 5-26
5-39 Bit Switch Setting for Additional Sensor 5-26
$5-40 \quad$ Calibration of Model 4200-4C Sensor 5-26
5-41 Calibration Notes. Model 4200)-6 Sensor +30 dBm Range 5-27
Paragraph Page
Table of Replaceable Parts 6-1
SECTION VII - SCHEMATIC DIAGRAMS
Paragraph Page
Schematic Diagrams $7-1$
APPENDIX A - IEEE-488 BUS INTERFACE OPTION +200-01A
APPENDIX B - IEEE- 488 BUS INTERFACE OPTION 4200-01B
APPENDIX C - INPUT CHANNEL 2 OPTION 4200-03
APPENDIX D - REAR INPUT OPTION 4200-04
APPENDIX E - INTERNAL TMA (MATE) OPTION $\mathbf{4 2 0 0 - 0 6}$
APPENDIX F - REAR INPUT OPTION 4200-S/17
LIST OF IILLUSTRATIONS
Figure Page
1-1 Model 4200 RF Microwattmeter vi
1-2 Outline Dimensions 1-11
2-1 Packaging Diagram 2-1
3-1 Front View of Instrument 3-2
3-2 Rear View of Instrument 3-2
3-3 Typical Temperaure Characteristics of Series 4200 Sensors 3-10
3.4 Typical Combined Temperature Characteristics of Instrument and Sensor 3-10
3-5 dB-SWR Conversion Chart 3-11
4-1 Overall Block Diagram 4-2
4-2 Typical Series 4200 Sensor. Schematic Diagram 4-3
4-3 Input P.C. Board. Detailed Block Diagram 4-5
4-4 Control P.C. Buard. Detailed Block Diayram 4-7
4-5 Display P.C. Board. Detailed Block Diagram 4-11
4-6 Power Reference P.C. Board. Detailed Block Diagram 4-13
4-7 Power Supply P.C. Board. Detailed Block Diagram 4-15
5-1 Location of Major Assemblies (Sheet 1 of 2) 5-4
5-1 Location of Major Assemblies (Sheet 2 of 2) 5-5
5-2 Input P.C. Board. Voltage and Waveform Data 5-6
5-3 Control Board Bit Switch Settings 5-7
5-4 Non-Volatile RAM Cell Test and Connection Points 5.18
5-5 Test Setup lor Input Module Offset. Chopper. and A/D Converter Adjustments 5-20
5-6 Test Setup for Recorder Outpui Adjustment 5-21
5-7 Test Setup for Determination of Attenuation Value 5-28
5-8 Calibration Test Setup. Model +200$)-6$ Sensor. +30 dBn Range $5-28$

LIST OF TABLES

Table Page
1-I Performance Specifications 1-3
1-2 Sensor Characteristics 1-8
1-3 Maximum Response Chart for Series +2 20)-A Sensors 1-9
3-1 Operating Controls. Indicators and Connectors 3-3
3-2 Instrument Zeroing Time 3-8
5-1 Test Equipment List 5-1
5-2 Control Board Address Field Test 5-8
5-3 Control Board Memory Decoding Test 5-8
5-4 Control Board I/O Decoding Test 5-9
5-5 Conitrol Board ROM 0 Test 5-9
5-6 Control Board ROM I Test 5-9
5-7 Interface Board ROM 2 Test 5-10
5-8 Control Board +ABIO Test 5-11
5-9 Control Board +CIO Test 5-11
5-10 Control Board +DIO Test 5-11
5-11 Display Visual Test 5-12
5-12 Control Board Display Test 5-12
5-13 Control Board Display Scan Test 5-12
5-14 Keyboard Visual Test 5-13
5-15 Control Board RaM Test 5-13
5-16 Input Module. Channel I 0AIO Test 5-14
5-17 Input Module. Channel I OBIO Test 5-14
5-18 Input Module. Channel I OCIO Test 5-15
5-19 Input Module. Channel I ODIO Test 5-15
5-20 Input Module. Channel 2 IAIO Test 5-15
5-21 Input Module. Channel 2 IBIO Test 5-16
5-22 Input Module. Channel 2 ICIO Test 5-16
5-23 Input Module. Channel 2 IDIO Test 5-17
5-24 DC Calibration Test 5-22
5-25 Full Scale Sensor Calibration Data for 4A, 4B, 4C, 4E, $5 B^{*}, 5 E^{*}, 5 G, 6 E^{*}, 7 E$ and $8 E^{*}$ Series Sensors 5-23
5-26 Down Scale Sensor Calibration Data for 4A, 4B, 4C, 4E. 5B*, 5E*, 5G, 6E*, 7E, and 8E* Series Sensors 5-24
5-27 Down Scale Connection Data 5-24
5-28 Typical Calibration Data for Model 4200-6 with Model 4200 5-26

Figure 1-1 Model 4200 RF Microwattmeter

SECTION I INTRODUCTION

1-1. INTRODUCTION.

1-2. This instruction manual provides general information, installation and operating instructions, theory of operation, maintenance instructions and parts list for the Model 4200 RF Microwattmeter.

I-3. DESCRIPTION.

1-4. The Model 4200 is a microprocessor-based solid state RF microwattmeter. The instrument is capable of measuring RF power levels from $1 \mathrm{nW}(-60 \mathrm{dBm})$ to $1 \mathrm{~W}(+30$ dBm) for a frequency range of 0.2 MHz to 110 GHz . The instruments calibrated power level and frequency range is determined by the Series 4200 sensor used with the instrument. The Series 4200 sensors are accessories and must be ordered per application. Refer to Table I-2 for the Series 4200 sensor characteristics.

1-5. The Model 4200 is designed to perform the following operations:
a. Low-power transmitter, signal generator, and oscillator measurements.
b. SWR and return-loss measurements with directional couplers and slotted lines.
c. Gain and insertion loss measurements.
d. RF attenuation and SWR measurements.
e. Antenna measurements.

1-6. The Model 4200 design features are as follows:
a. Wide Frequency Range: 0.2 MHz to 110 GHz . The calibrated frequency range of the instrument is determined by the sensor utilized. Refer to Table 1-2.
b. Wide Power Range. Depending on the seleeted sensor, the instrument will measure RF power from I nW up to 1 W . Temporary overtoads up to 300 mW with Series $4200-4$ sensorsand up to 2 W with Series 4200 -5 sensors will do no permatient harm to the instrument or tle sensor.

When measuring pulsed signals, the power indications are accurate up to 20 microwatts peak power (200 microwatts with Series $4200-5$ sensors). External attenuators may be used to extend the measurement range of the instrument.
c. Low Noise. The instrument has been designed and constructed to minimize noise from all sources. The sensor cable is of a special low-noise design; vigorous flexing causes only momentary minor deflections on the most sensitive range of the instrument. The sensors are insensitive to shock and vibration: even sharp tapping on the sensor barrel causes no visible deflection on any range. Internal signal amplification occurs at approximately 94 Hz thereby reducing susceptibility to 50 or 60 Hz fields. A low-noise solid-state chopper is used.
d. LED Display. Mcasured power levels are displayed by a 4 digit, LED type readout with decimal points and minus sign. Annunciators associated with the LED display indicate the units of measurement. The result is a clear, unambiguous readout that minimizes the possibility of misinterpretation. The display is also used to show data being entered into non-volatile memory and to display data recalled from non-volatile memory; the display and annunciators blink on and off during data entry and recall to indicate that displayed values are not measured values.
e. Analog Indications. A front-panel analog meter provides relative power indications for peaking or nulling applications. A de voltage proportional to the measured power level is available at a rear-panel connector for application to a recorder or other external device.
f. Pushbutton Measurement Mode Selection. A choice of measurement modes is available to the operator. Indications in terms of power or dBm can be selected by pressing the appropriate front-panel key switch. $\mathrm{A} d \mathrm{~B}$ reference level can be entered through the keyboard and a display mode selected to indicate power levels in dB , relative to a dB reference level.
g. Automatic Ranging. Autoranging under control of the mieroprocessor eliminates the need for manual ranging. Alternately, a measurement range can be retained for all me:surements, if desired, by selecting the range hold mode.

Section I

Introduction

Applications of power levels that exceed the maximum or minimum measurement capability of the instrument (or range in the hold mode) results in an error indication on the LED display.
h. Automatic Zeroing. An automatic zeroing circuit eliminates the need for tedious, often inaccurate, manual zeroing. With zero input to the sensor, pressing a frontpanel key switch directs the microprocessor to compute and store zero corrections for each range, and the instrument is thereafter corrected on each range in accordance with the stored data. This method is considerably simpler, faster, and more accurate than manual zeroing.
i. Automatic Sensor Compensation. Calibration factors for up to eight sensors may be stored in the microprocessor. Calibration data is written into non-volatile storage at the factory for sensors ordered with the instrument; calibration data may also be written into storage in the field. When the sensor being used and the measurement frequency are specified through front-panel keyboard entry, measurement values are corrected automatically with calibration factors. Alternately, the calibration factor in $d B$ for a particular sensor being used may be entered through the keyboard, and the measurement values are then corrected automatically in accordance with the correction factor. Both power and dB values are corrected.
j. Built-in Power Reference. An accurate, 1.000 milliwatt, 50 MHz signal for instrument calibration is provided by a built-in power reference. Calibration is simply a natter of conneeting the sensor to the power reference, and pressing a key; the calibration correction is computed automatically by the microprocessor. The calibration circuit has built-in protection against inadvertent key actuation when the sensor is not connected to the power reference: calibration correction is limited to approximately 7.5% from the original factory sct value. Computed calibration corrections that exeeed this range are rejected automatically. and the instrument returns to its previous sensitivity. If the instrument is supplied with a 75 -ohm sensor $(420)-+C$) an adapter ($\mathrm{P} / \mathrm{N} 950006$) is also supplied. This adapter is used between the power relerence and the sensor to convert the Type N power reference connector to a 75 -ohm Type N. Before calibration, a 0.17 dB CAL FACTOR should be entered to compensate for the mismatch error that is introduced by the 75 -ohm sensor.

k. Pushbutton High/I.ow dB Limit Selection. High/

 low dB limits may be entered through the front-panel keyboard. A front-panel annunciator indicates when measured dB levels are ottside the prese limits. Signals are also ativated at a rear-pancl comector to provide remote indications of out-of-limit measurements.1. Solid-state Chopper. Signal amplification in the instrument occurs at approximately 94 Hz . Input signals from the sensor are converted into a 94 Hz . signal by a solid-state, low-level input modulator (chopper), which represents a distinct improvement over electromechanical choppers. Extended service life is assured through the elimination of contact wear, contamination, and other problems associated with electromechanical choppers.
m. Signature Analysis Maintenance. Connection facilities to permit signature analysis maintenance are incorporated. Digital circuit troubles can be localized rapidly and accurately using the signature analysis maintenance technique, thereby reducing instrument down-time. A diagnostic ROM (P N 961003) is available from Boonton Electronics Corporation for signature analysis maintenance.

1-7. ACCESSORIES.

1-8. The following accessories are supplied with the instrument:

a. AC power cord

b. Sensor cable

1-9. The Series 4200 sensors are not supplied with the instrument and must be ordered. Refer to Table 1-2 for the sensor characteristics.

1-10. If the instrument is ordered with sensor(s) the sensor calibration data is programmed into the instrument at the factory. If additional sensor(s) are required after the instrument is in the field, the new sensor calibration data can be field installed.

1-11. OPTIONS.

1-12. The following options are available for the instrument:
a. Rack mount hardware kits.
b. -OIA IEEE Bus Interface.
c. -01B IEEE Bus interface.
d. -03 Second Input Channel.
e. -04 Rear Input.
f. -06 Internal TMA (MATE). Requires -01B Option.
g. -S/17 Two Inputs On Front Panel. Requires -03 Option.
1-13. Information concerning the Option is included in the Appendices of this manual.
1-I4. Please direct all special instrument applications questions to the Applications Engineering Department of Boonton Electronics Corporation.

1-15. SPECIFICATIONS.

1-16. Performance specifications are listed in Table l-1.

1-17. OUTLINE DIMENSIONS.

1-18. Outline dimensions of the instrument are shown in Figure 1-2.

TABLE 1-1. SENSOR CHARACTERISTICS

Section I
Introduction
TABLE 1-1. PERFORMANCE SPECIFICATIONS (Cont.)

TABLE 1-1. PERFORMANCE SPECIFICATIONS (Cont.)

Waveguide Sensor Calibration Factor Uncertainty

Sensor	Ref. GHz		$\begin{gathered} \text { Over } \\ \text { Sensor } \\ \text { BW } \end{gathered}$	Sensor	Ref. GHz	Al Ref. Freq.	Over Sensor BW	Sensor	Ref. GHz	At Ref. Freq.	Over Sensor BW	Sensor	Ref. GHz	At Ref. Frea.	Over Sensor BW
$\begin{aligned} & \text { 4K (51035) } \\ & \text { Max. \% } \\ & \text { RSS \% } \\ & \hline \end{aligned}$	22	$\begin{aligned} & 6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40(51037) \\ & \text { Max. \% } \\ & \text { RSS } \% \\ & \hline \end{aligned}$	40	$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & 13 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 4V (51046) } \\ & \text { Max. \% } \\ & \text { RSS } \% \\ & \hline \end{aligned}$	60	$\begin{aligned} & 12 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WRD-180 } \\ & (5.1972) \end{aligned}$	33		
4Ka (51036) Max. \% RSS $\%$	33	6 5	10 7	$\begin{aligned} & \text { 4U (51045) } \\ & \text { Max. \% } \\ & \text { RSS \% } \end{aligned}$	40	10 6	${ }^{13}$	$\begin{aligned} & 4 W(51047) \\ & \text { Max. \% } \\ & \text { RSS \% } \end{aligned}$	94	12 9	13	$\begin{aligned} & \text { Max. \% } \\ & \text { RSS \% } \end{aligned}$		6 5	10 7

Note: For waveguide sensors, the reterence calibration is at -20 dBm .
D. Power Reference Uncertainty. Power reference accuracy is $\pm 1.2 \%$ worst case for one year (0° to $55^{\circ} \mathrm{C}$). When calculating the sum of the uncertainties, only include 0.5% for the power reference as the remaining 0.7% is included in A above.

TABLE 1-1. PERFORMANCE SPECIFICATIONS (Cont.)

Parameter	Specifications
POWER REFERENCE	
Source	Internal 50 MHz oscillator with Type N female connector on front panel.
Power output	1.00 mW , factory set to $\pm 0.7 \%$, traceable to National Bureau of Standards, $\pm 1.2 \%$ worst cast for one year (0° to $55^{\circ} \mathrm{C}$).
CALIBRATION	Front panel key automatically calibrates instrument to power reference.
ZERO	Automatic, operated by front-panel switch.
CALIBRATION FACTOR	+3.0 dB to -3.0 dB ranges in 0.01 dB steps, entered through front panel keys; alternately, stored calibration factors are interpolated linearly and applied automatically to readings when the frequency is entered through front panel keys. Up to 20 individual calibration factors for up to 8 power sensors can be stored in non-volatile memory.
MEASUREMENT TIME	Diode sensors, typically 0.2 to 0.5 s except $2-6 \mathrm{~s}$ below -40 dBm . Thermocouple sensors, typically 0.5 to 6 s for increasing levels, 0.5 to 14 s for decreasing levels.
RECORDER OUTPUT	See Table 1-3.
Watt Mode	10 volts full-scale, proportional to indicated power over each range.
dB Mode	8 volts equivalent to 0 dBm for all sensors with a sensitivity of 1 volt per 10 dB change over the entire range.
DISPLAY	4-digit LED, 3-1/2 digit display of power, 4-digit display of dB with 0.01 dB resolution. Auxiliary analog display, uncalibrated, proportional to recorder output.
dB LIMITS	Entered through front panel in dB only, operable in both dB and power modes.
ANNUNCIATORS	LED display of $\mathrm{mW}, \mu \mathrm{W}, \mathrm{nW}, \mathrm{dBm}$, or relative $\mathrm{dB}(\mathrm{dBr})$; LED indication of use of channel $1(\mathrm{CHI})$, channel $2(\mathrm{CH} 2$, option -03$)$, and channel 3 $(\mathrm{CH} 3=\mathrm{CH} 1-\mathrm{CH} 2$ in dB$)$; out of dB limits; and condition of GPIB activity (LSN, ATN, REM, AND TALK, option-01).
POWER CONSUMPTION	$24 \mathrm{VA} ; 100,120,220$, and 240 volts, 50 to 400 Hz .
WEIGHT	4.54 kg (10 lbs .) approximately.
DIMENSIONS	14.9 cm high $\times 21.1$ wide $\times 34.9$ deep ($5.85 \mathrm{in} . \times 8.3 \times 13.75$) .
ACCESSORIES FURNISHED	5 foot power sensor cable, Model 41-2A, for each sensor ordered.
ACCESSORIES REQUIRED	One or more of the power sensors: Refer to the Sensor Characteristics.

TABLE 1-1. PERFORMANCE SPECIFICATIONS (Cont.)

Section I

Introduction

TABIE 1-1. PERFORMANCE SPECIFICATIONS (Cont.)
In Channel 3 operation, GHz entry applies the appropriate calibration factors for that frequency separately to Channel 1 and Channel 2. Other measurement parameter entries made in the Channel 3 mode do not respond and those previously made for Channel 1 and Channel 2 remain active.
The recorder output is driven by Channel 1 or Channel 2 as selected. In Channel 3 operation the recorder output reverts to Channel 1 .
-04 Rear Input: Duplicates front panel Channel 1 input connector.
-06 Internal TMA (MATE). Requires -01B Option.
-S/17 Two Inputs-On Front Panel. Requires -03 Option.
TABLE 1-2. SENSOR CHARACTERISTICS

Modet (Impedance) (RF Connector)	Freq. Pange	PWR range (Watts) (dBm)	Overtoad Rating (Warts! (dBm)	Max. SWR		Drift and Norse Lowest Range		
				Frequency	SWR	Drift typreat 1 Hr	Nonse RMS	$\begin{gathered} \text { ypreath } \\ 20 \end{gathered}$
DIODE SENSORS								
$\begin{gathered} 51011(48) \\ 508 \\ N(M) \end{gathered}$	100 kHz to 12.4 GHz	$\begin{aligned} & 1 \text { nw to } 10 \mathrm{mw} \\ & -60 \text { to } 10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 300 \mathrm{mw} \\ & +25 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 100 \mathrm{kHz} \text { to } 2 \mathrm{GHz} \\ & 2 \mathrm{GHz} \text { to } 4 \mathrm{GHz} \\ & 4 \mathrm{GHz} \text { to } 11 \mathrm{GHz} \\ & 11 \mathrm{GHz} \text { to } 12.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.12 \\ & 1.2 \\ & 1.4 \\ & 1.6 \\ & \hline \end{aligned}$	150 pw	65 ow	130 pw
$\begin{gathered} 51012(4 \mathrm{C}) \\ 758 \\ \text { NiM) } \end{gathered}$	100 kHz to 1 GHz	1 nW to 10 mw $-6010+10 \mathrm{alm}$	$\begin{aligned} & 300 \mathrm{mw} \\ & +25 \mathrm{dBm} \end{aligned}$	100 kHz to 1 GHz	1.18	150 pW	65 pW	130 pW
$\begin{gathered} \hline 51013(4 E) \\ 501 \\ N(M) \\ \hline \end{gathered}$	100 kHz 1018 GHz	t nw 1010 mW $-6010+10 \mathrm{~d} \mathrm{~mm}$	$\begin{gathered} 300 \mathrm{mw} \\ +25 \mathrm{dBm} \end{gathered}$	100 kHz to 4 GHz 4 GHz to 10 GHz 10 GHz to 18 GHz	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 1.7 \end{aligned}$	150 pW	65 pW	130 pw
$\begin{gathered} 51051(4 \mathrm{G}) \\ 500 \\ A P C \text { 3.5(M) } \end{gathered}$	1 MHz 10 26.5 GHz	$\begin{aligned} & \text { I nw to } 10 \mathrm{mw} \\ & -60 \text { to }+10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 300 \mathrm{mw} \\ & +25 \mathrm{dBm} \end{aligned}$	1 MHz to 12.4 GHz 12.8 GHz to 18 GHz 18 GHz to $26.5 \mathrm{GHz}_{2}$	$\begin{aligned} & 1.28 \\ & 1.37 \\ & 1.92 \\ & \hline \end{aligned}$	100 pW	30 pW	60 pw
$\begin{gathered} \hline 51015(5 E) \\ 500 \\ N(M) \end{gathered}$	100 kHz to 18 GHz	10 nW to 100 mw $-50 \mathrm{to} \mathrm{+} 20 \mathrm{dgm}$	$\begin{aligned} & 2 \mathrm{w} \\ & +33 \mathrm{dBm} \end{aligned}$	100 kHz to 1 GHz 1 GHz to $2 \mathrm{GHz}_{2}$ 2 GHz to 4 GHz 4 GHz to 12.4 GHz 12.4 GHz to 18 GHz	$\begin{aligned} & 1.07 \\ & 1.10 \\ & 1.12 \\ & 1.18 \\ & 1.28 \end{aligned}$	1.5 nW	0.65 nw	1.3 nw
$\begin{gathered} 51033(6 E) \\ 500 \\ N(M) \end{gathered}$	100 kHz to 18 GHz	$\begin{aligned} & 100 \text { nW } 101 \mathrm{w} \\ & -4010+30 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \hline 2 w \\ & +33 \mathrm{dBm} \end{aligned}$	100 kHz to : GHz $t \mathrm{GHz}$ to 2 GHz 2 GHz to 4 GHz 4 GHz to 12.4 GHz 12.4 GHz to 18 GHz	$\begin{aligned} & 1.07 \\ & 1.10 \\ & 1.12 \\ & 1.18 \\ & 1.28 \\ & \hline \end{aligned}$	15 nW	6.5 nw	13 nW
THERMOCOUPLE SENSORS								
$\begin{gathered} 51016(7 E) \\ 502 \\ N(M) \end{gathered}$	10 MHz to 18 GHz	$\begin{aligned} & 1 \mu W \text { to } 10 \mathrm{~mW} \\ & -30 \text { to }+10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~mW} \\ & +15 \mathrm{dBm} . \end{aligned}$	10 MHz to 15 MHz 15 MHz to 10 GHz 10 GHz to 18 GHz	$\begin{aligned} & 1.5 \\ & 1.35 \\ & 1.6 \end{aligned}$	450 nW	150 nW	300 nw
- Thermocouoie Pulse Characterisnes at $25^{\circ} \mathrm{C}$. Maxımum pulse energy $=5 \mathrm{~W}$ - $\mu \mathrm{sec}$. Maximum puise oower = 1 W Maximum pulse duration at maximum pulse oower $=5 \mu \mathrm{sec}$.								
$\begin{gathered} 51017(8 \mathrm{E}) \\ 500 \\ \mathrm{~N}(\mathrm{M}) \end{gathered}$	10 MHz to 18 GHz	$10 \mu \mathrm{~W}$ to 100 mW $-2010+20 \mathrm{dBm}$	$\begin{aligned} & 200 \mathrm{~mW} \\ & +23 \mathrm{dBm} . \end{aligned}$	10 MHz to 15 MHz 15 MHz to 10 GHz 10 GHz to 18 GHz	$\begin{aligned} & 1.5 \\ & 1.35 \\ & 1.6 \end{aligned}$	45 uW	15 uN	3 NiN
- Thermocouvie Puise Cnaracteristics at $25^{\circ} \mathrm{C}$. Maximum puise energy $=30 \mathrm{~W}$ - Hecc . Maximum pulse cower $=15 \mathrm{~W}$ Maxmum pulse duration at maximum puise power $=2$ usec.								
WAVEGUIDE SENSORS								
$\begin{aligned} & \text { 50135 (4K1 } \\ & \text { WR-42 } \\ & \text { UG-595/U } \end{aligned}$	18 GHz to.26.5 GHz	10 nW 1010 mW $-5010+10 \mathrm{dBm}$	$\begin{aligned} & 103 \mathrm{~mW} \\ & -20 \mathrm{aBm} \end{aligned}$	18 GHz 10 26.5 GHz	1.3	200 ow	60 pw	120 ow
$\begin{aligned} & 51972 . W R D \\ & \text { WRD } 180 C 24 \\ & \hline \end{aligned}$	18 GHz to 40 GHz	10 nW 1010 mW -50 to +10 dBm	$\begin{aligned} & 100 \mathrm{~mW} \\ & +20 \mathrm{dBm} \\ & \hline \end{aligned}$	18 GHz to 40 GHz	1.3	200 pW	60 pW	120 ow
$\begin{gathered} 51038(4 \mathrm{Ka}) \\ \text { WR-28 } \\ \text { UG-599/U } \\ \hline \end{gathered}$	28.5 GHz 10 40 GHz	10 nW 1010 mW $-5010+10 \mathrm{dBm}$	$\begin{aligned} & 100 \mathrm{mw} \\ & +20 \mathrm{dBm} \end{aligned}$	26.5 GHz to 40 GHz	13	60 ow	15 pW	30 pW
$\begin{gathered} 51037(40) \\ \text { WR.22 } \\ \text { UG-383/U } \\ \hline \end{gathered}$	33 GHz to 50 GHz	10 nW to 10 mw $-50 \mathrm{to}+10 \mathrm{dBm}$	$\begin{aligned} & 100 \mathrm{mw} \\ & +20 \mathrm{dBm} \end{aligned}$	33 GHz to 50 GHz	1.3	60 ow	15 pw	30 ow
$\begin{gathered} 51045(4 \mathrm{U}) \\ \text { WR-19 } \\ \text { UG-383/U } \end{gathered}$	40 GHz 10 60 GHz	$10 \mathrm{nW} / 1010 \mathrm{~mW}$ $-5010+10 \mathrm{~d} \mathrm{~mm}$	$\begin{aligned} & 100 \mathrm{~mW} \\ & +20 \mathrm{dEm} \end{aligned}$	40 GHz to 60 GHz	13	60 pw	15 pw	30 pw
$\begin{gathered} 51046(4 \mathrm{~V}) \\ \text { WR-15 } \\ \text { UG-385/U } \\ \hline \end{gathered}$	$\mathbf{5 0 G H z}$ to 75 GHz	10 nW to 10 mW $-5010+10 \mathrm{dBm}$	$\begin{aligned} & 100 \mathrm{mw} \\ & +20 \mathrm{dBm} \end{aligned}$	$\mathbf{5 0} \mathbf{G H z}$ to $\mathbf{7 5} \mathbf{G H z}$	1.3	60 pW	15 pw	30 pw
$\begin{gathered} \text { 51047(4W) } \\ \text { WR-10 } \\ \text { UG-387/U } \end{gathered}$	75 GHz 10110 GHz	32 nw 1010 mW $-45 \text { to + } 10 \mathrm{~d} 8 \mathrm{~m}$	$\begin{aligned} & 100 \mathrm{mw} \\ & +20 \mathrm{~d} \mathrm{~mm} \end{aligned}$	75 GHz to 110 GHz	13	60 0w	15pw	30 pw

NOTES: • Will withstand shont pernods ol overioad. extended overhsad operation may resuit in permanent change in characteristics or burnout.
Power lineanty uncertannty: (worst case) $4 \mathrm{~B} .4 \mathrm{C} .4 \mathrm{E}(003 \times f) \mathrm{dB}$ per $\mathrm{d} 日$ above +4 dBm (above +14 dBm lar ine $5 E$ and above +24 dBm for ine $6 E$), wheref is in GHz. Other semsors: negrigiole.

Table 1-3A. Model 4200 and DIODE SENSORS: Measurement Speed through the IEEE Bus

Starting Level, dBm			10-dB Power Step		20-db Power Step		30-db Power Step		50-db Power Step	
-4E Sensor	-5E Sensor	-6E Sensor	Increasing	Decreasing	Increasing	Decreasing	Increasing	Decreasing	Increasing	Decreasing
-60	-50	-40	0.60 s	N.A.	0.65 s	N.A.	0.45 s	N.A.	0.50 s	N.A.
-50	-40	-30	0.60 s	5.4 s	0.40 s	N.A.	0.35 s	N.A.	0.50 s	N.A.
-40	-30	-20	0.40 s	1.0 s	0.35 s	5.4 s	0.40 s	N.A.	0.35 s	N.A.
-30	-20	-10	0.35 s	0.50 s	0.35 s	1.0 s	0.40 s	5.4 s	N.A.	N.A.
-20	-10	0	0.35 s	0.30 s	0.35 s	0.55 s	0.30 s	1.0 s	N.A.	N.A.
-10	0	+10	0.20 s	0.25 s	0.15 s	0.25 s	N.A.	0.70 s	N. A .	6.0 s
0	+10	$+20$	0.15 s	0.35 s	N.A.	0.35 s	N.A.	0.50 s	N.A.	1.7 s
$+10$	$+20$	+30	N.A.	0.35 s	N.A.	0.35 s	N.A.	0.60 s	N.A.	1.0 s

Table 1-3B. Model 4200 and THERMAL (true RMS) SENSORS: Measurement Speed through the IEEE Bus

Starting Level dBm		10-dB Power Step		20-db Power Step		30-db Power Step		40-db Power Step	
-7 Sensor	-8E Sensor	Increasing	Decreasing	Increasing	Decreasing	Increasing	Decreasing	Increasing	Decreasing
-30	-20	6.0 s	N.A.	1.0 s	N.A.	0.75 s	N.A.	0.35 s	N.A.
-20	-10	1.0 s	4.0 s	0.75 s	N.A.	0.35 s	N.A.	N.A.	N.A.
-10	0	0.75 s	1.6 s	0.35 s	6.15	N.A.	N.A.	N.A.	N.A.
0	+10	0.25 s	1.5 s	N.A.	2.75	N.A.	9.0 s	N.A.	N.A.
$+10$	+ 20	N. A.	0.50 s	N.A.	4.0 s	N.A.	13.4 s	N.A.	14.0 s

NOTES: 1. "Measurement Speed" is the time required to make measurements within 0.1 dB of final value on the ending range. using an HP-85 controller. The free-run access time is 55 ms (18 measurements per second).
2. These are typical speeds (in seconds), using the Display-Hold ("Q" command) measurement mode.
3. With dual-channel operation (i.e.: with Option -03 installed). the measurement rate is two sets of readings per second.

TABLE 1-3. MAXIMUM RESPONSE CHART FOR SERIES 4200-A SENSOR.

Section I

Introduction

Table 1-3C. Model 4200 and DIODE SENSORS: Measurement Speed through the IEEE Bus

Starting Level, dBm	10-dB Power Step		20-db Power Step		30-db Power Step		50-db Power Step	
4K. $4 \mathrm{Ka} . ~+\mathrm{Q}, 4 \mathrm{U}$, $4 \mathrm{~V}, 4 \mathrm{~W}$, WRDI80 Sensors	Increasing	Decreasing	Increasing	Decreasing	Increasing	Decreasing	Increasing	Decreasing
- 50	0.60 s	N.A.	0.65 s	N.A.	0.45 s	N.A.	0.50 s	N.A.
-40	0.60 s	1.0 s	0.40 s	N.A.	0.35 s	N.A.	0.50 s	N.A.
-30	0.40 s	0.5 s	0.35 s	1.0	$0.40)$	N.A.	N.A.	N.A.
-20	0.35 s	0.35 s	0.35.s	0.55 s	0.40 s	1.0 ,	N. A .	N.A.
-10	0.35 s	0.35 s	0.35 s	0.35 s	N.A.	0.55 s	N.A.	N.A.
0	0.20 s	0.25 s	N.A.	0.25 s	N.A.	0.35 s	N.A.	1.7 s
$+10$	N.A.	0.35 s	N.A.	0.35 s	N.A.	0.35 ,	N.A.	1.0 s

NOTES: 1. "Measurement Speed" is the time required to make measurements within 0.1 dB of final value on the ending range, using an HP-85 controller. The free-run access time is 55 ms (18 measurements per second).
2. These are typical speeds (in seconds), using the Display-Hold ("Q" command) measurement mode.
3. With dual-channel operation (i.e.: with Option -03 installed), the measurement rate is two sets of readings per second.

TABLE 1-3. MAXIMUM RESPONSE CHART 2 FOR INSTRUMENT AND 4240 SENSOR (Cont.)

Figure 1-2 Outline Dimensions

SECTION II
 INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains instructions for the installation of the Model 4200 RF Microwattmeter.

2-3. INSTALLATION.

2-4. Unpacking. The instrument is shipped complete with sensors (if ordered), and is ready for use upon receipt. Packaging details are shown in Figure 2-1. Unpack the instrument carefully, and inspect it for any signs of shipping damage. Should any damage be noted, notify the carrier and the factory immediately.

NOTE

Save the packing material and container for possible use in reshipment of the instrument.

2-5. Mounting. For bench use, choose a clean, sturdy, uncluttered surface. See Figure $1-4$ for space requirements. For rack mounting, an accessory package, part number 950000, is available to mount one instrument, and another package, part number 950001 , is available to mount two instruments side-by-side.

2-6. Power Requirements. The instrument has a tapped power transformer which permits operation from 100 , 120,220 , or 240 volt $\pm 10 \%, 50$ to 400 Hz , single phase ac power sources. Power consumption is approximately 24 volt-amperes at 60 Hz .

2-7. Cable Connections. Interconnecting cable connections required depend upon the options installed and the system applications of the instrument. A line cord and sensor cable are supplied with the instrument. Any other cables required must be supplied by the user. Cable connections that may be required are as follows:

Figure 2-I Packaging Diagram

Section II
 Installation

a. Sensors. The sensor cable supplied with the basic instrument connects directly to the front-pa nel SENSOR connector, and the sensor that is to be used for power measurements connects directly to the other end of the sensor cable. Although the sensors are insulated against extreme temperature variations, it is advisable to locate the sensor away from heat sources when using the most sensitive ranges of the instrument. If the instrument is to be used to measure the output of equipment that generates heat significantly above the ambient temperature, a short length of coaxial cable or solid line having the same characteristic impedance as the sensor may be used between the sensor and the equipment undergoing test to allow heat to dissipate before reaching the sensor. If such a cable is used, the length must be kept as short as possible for operation at the high end of the frequency range; cable losses and an increase in SWR will tend to degrade measurement accuracy.

NOTE

The front-panel SENSOR connector is the input connector for channel I measurements. If the instrument is equipped with option -03, a sensor may be connected to the rear-panel connector marked SENSOR; the same conditions apply to this sensor connection. The rear-panel connector is the input connector for channel 2 -measurements.

* b. Recorder Output. Recorder connector J20 (type BNC) on the rear panel provides an analog dc voltage for application to a remote recorder. The output resistance is approximately 9000 ohms, delivering I milliampere into a 1000 ohm load for full scale input in the power mode. The analog dc voltage is proportional to the following:
(1.) In the power mode, it is proportional to displayed power, with 10 volts for full scale each range, either channel.
(2.) In the dB mode, it is proportional to displayed dBm with the relationship shown following:

Recorder Output			
	Sensors Series		
	$4 / 7 / \mathrm{K} / \mathrm{Ka}$ Q/U/V/W/	$5 / 8$	6
	WRDI80		

(3.) In the channel 3 mode (option), it is similar to the dB mode, but for the channel I level only.
c. Status Output. Rear-panel connector P3 provides signal outputs for input disconnect during zeroing operations and high and low DB limit signals during dB measurements. The dB limits always test against the displayed value for operation. With the calibration factor and $d B$ reference level equal to zero, the $d B$ limits entered prevail. With a dB reference level other than zero the displayed value is checked against the limits chosen. In the channel 3 mode (option), the first limit exceeded. whether channel 1 or channel 2 , activates the limit status Pin connections are as follows:

Connector Pin	Signal
1	Common
2	Not used
3	Logic high indicates zeroing operation
4	Logic low within dB limits; logic high above high dB limit
5	Logic low within dB limits: logic high below low dB limit

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. This section contains the operating instructions for the Model 4200 RF Microwattmeter.

3-3. OPERATING CONTROLS, INDICATORS, AND CONNECTORS.

3-4. The controls, indicators, and connectors used during the operation of the instrument are listed in Table 3-1 and shown in Figures 3-1 and 3-2.

3-5. SENSOR CALIBRATION DATA.

3-6. Calibration corrections for sensors ordered with the instrument are written into microprocessor storage at the factory before shipment of the instrument and sensor. A copy of this information is stored under the right side cover. When the CAL FACTOR GHz function of the instrument is used during measurement, the microprocessor reads and interpolates the stored data on the basis of the specified measurement frequency, and corrects all measurement values accordingly. The microprocessor memory has storage capacity for calibration data for up to eight sensors. Calibration corrections vary for different sensors; therefore, if sensors are to be substituted or added in the field, calibration data for these sensors must be written into memory in the field in order for the CAL FACTOR GHz function to be accurate. Refer to paragraph 5-37 for calibration data entry procedures.

3-7. POWER APPLICATION.

3-8. The basic instrument is designed for operation from a $100,120,220$, or 240 volt, 50 to 400 Hz , single phase, ac power source. To apply ac power, proceed as follows:
a. Determine the line voltage at the ac power output receptack.
b. Set the two slide switches on the rear panel to conform to the available ac line voltage.
c. Check the rating of the fuse in the rear-panel fuseholder. For 100 or 120 volt operation, the fuse should be a 0.3 ampere, MDL Slo-Blo type; for 220 or 240 voit operation, it should be a 0.2 ampere, MDL Slo-Blo type. If the rating of the fuse is incorrect, install a fuse of the required rating in the fuscholder.

WARNING

The instrument is designed to operate from a 3-terminal (one ground) ac power receptacle. If only a 2 -terminal ac power receptacle is available, use a 3-prong to 2-prong adapter. Connect the ground wire of the adapter to the power receptacle ground to eliminate a potential shock hazard to the operator.
d. Connect the power cord between the ac power connector on the rear panel of the instrument and the ac power receptacle (with adaptor, if necessary).

3.9 PRELIMINARY CHECKOUT

NOTE

The following checkout procedure is intended merely to demonstrate that the major circuits of the instrument are operating before the instrument is placed for service. For a detailed check of the instrument against performance specifications, refer to paragraph 3-34.

3-10. To perform the preliminary checkout, proceed as follows:
a. Set the LINE switch to the ON position.
b. Check operation of the LED display and the numerical keys by pressing the following keys in the

Figure 3-1 Front View of Instrument

Figure 3-2 Rear View of Instrument

TABLE 3-1. OPERATING CONTROLS, INDICATORS, AND CONNECTORS

Control, Indicator or Connector	Figure and Index No.	Function	Control, Indicator, or Connector	Figure and Index No.	Function
LSN, ATN, REM, and TLK annunciators	3-1,1	Indicates operation of IEEE-488 bus interface (option-01).	SELECT keys CHNL key SENS	3-1, 12	Provides means for entering and recalling channel and sensor
Meter	3-1, 2	Indicates power and dB levels for peaking and nulling operation.	$\frac{\mathrm{SLiv}}{\cdot \mathrm{~S} / \mathrm{N}} \text { key }$ REF LEL		serial numbers.
$\mathrm{CH}, \mathrm{CH} 2$, and CH3 annunciators	3-1, 3	and nulling operation. Indicates channel in use.	$\begin{aligned} & \text { REF LEL } \\ & \frac{\mathrm{dB}}{\cdot \mathrm{SET}} \text { key } \end{aligned}$	$3-1,13$	Provides means to set the dB reference level.
MODE keys	3-1, 4	Selects LED display indication mode (POWER or dB).	$\frac{C L R}{L C L} \text { key }$	3-1, 14	Provides means for clearing incorrect digit(s) entry, clearing dB calibration factor
RANGE keys	3-1, 5	Selects ranging mode (AUTO or HOLD).			and dB reference level to zero, and returns
LED display	3-1,6	Four digit LED display with minus			IEEE-488 bus control.
		sign and decimal points: provides numerical indication	Numerical, decimal point, and and CHS keys	$3-1,15$	Provides means for entering signed numerical data.
		of measured power or dBm , and of data entered or recalled through keyboard,	LINE switch	3-1, 16	Provides means for turning AC line power on and off.
		or crror messages,	POWER REF connector	3-1, 17	Supplies 1 mW level at 50 MHz (0) 50 ohm
$\mathrm{mW}, \mu \mathrm{W}$, and nW annunciators	3-1, 7	Indicates units of power when instrument is operating in power mode.	connector		load when POWER REF ON switch is set to ON position.
dBm and dBr annunciators	3-1,8	Indicates dB mode in use when instrument is operating in	SENSOR connector	3-1, 18	Provides means for connecting sensor to channel I input.
		dB mode.	CALkey	3-1, 19	Provides means for
LIMI annunciator	3-1,9	Indicates when power level in dB is outside selected UB limits.			ment when sensor is connected to 1 mW source.
dB LIMITS keys	$3-1,10$	Provides means for entering and recalling dB limits (LO and HI).	ZERO key	3-1,20	Provides means for generating and storing zero corrections for all
CAL FAC keys	$3-1,11$	Provides means for entering and recalling calibration factors in terms of dB or frequency.			ranges with zero input to sensor.

TABLE 3-I. OPERATING CONTROLS, INDICATORS, AND CONNECTORS (Cont.)

Control, Indicator or Connector	Figure and Index No .	Function	Control, Indicator, or Connector	Figure and Index No.	Function
Jl connector	3-2, 1	Connector for IEEE483 bus operation (option -()]).	Power connector	3-2, 4	Provides connection lior power cord.
SI switch	3-2, 2	Provides means for selecting instrument address when instrument is equipped with IEEE-488 bus interface option (option -()\|A) and message terminator.	LINE VOLTAGE selector switch	$3-2,5$	Provides means for selecting proper line voltage.
			INPUT connector	$3-2,6$	Provides means for connceting sensorto channel 2 input (option (03).
P3 connector	3-2, 3	Provides logic level signals for input disconnect during	INPUT connector	3-2, 7	Alternate position for INPUT channel I (option (4).
		zeroing operations and high and low UB limit signals during dB measurements.	RECORDER connector	$3-2,8$	Provides means for connecting analog DC voltage to remote recorder.

sequence indicated and noting the LED display:

Press	Display
CLR	0000
.	0000
0	000.0
1	00.01
2	0.012
3	0123
CLR	0000
4	0004
5	0045
6	0456
7	4567
CLR	0000
8	0008
9	0089
CHS	-0089
CLR	0000

c. Enter measurement parameters by pressing the following keys:

```
I SELECT CHNL MODE dB RANGE AUTO 0 CAL FACTOR dB 0 REF LEVELdB 90 CHS dB LIMITS LO 90 dB LIMITS HI
```

d. Connect the sensor cable to the front-panel SENSOR connector, and connect the sensor to the free end of the sensor cable. Note the sensor number indicated on the barrel of the sensor, and enter this number through the numerical keyboard by pressing the numerical key corres-
ponding to the sensor number and then pressing the SELECT SENS keys. (Example: 2 SELECT SENS.)
e. Check to see that the $d \mathrm{Bm}$ and CHI annunciator lighted.
f. With zero input to the sensor, press the ZERO the instrument will now begin the zeroing process. instrument display during the zeroing period will be "cccc". Upon completion of zeroing, the display will be "cc03
g. Connect the sensor to the POWER REF connector. The LED display should indicate approximately 00.00 dBm (assuming that a 50 -ohm sensor is used). If it does press the CAL key.
h. Key in . 2 CAL FACTOR dB through the keyboard. The LED display should change to approximately 00.20 dBm.
i. Key in 0 CAL FACTOR dB through the keyboard. The LED display should return to approximately 00.00 dBm.
j. Key in I CHS REF LEVEL dB through the keyboard. The LED display should indicate approximately 01.00 dBr .
k. Key in 1 REF LEVEL $d B$ through the keyboard. The LED display should indicate approximately -01.00 dBr .

1. Key in 5 dB LIMITS HI through the keyboard. The LIM annunciator should be off.
m. Key in 5 CHS dBLIMITS LO through the keyboard. The LIM annunciator should remain off.
n. Key in .5 dB LIMITS HI through the keyboard. The LIM annunciator should remain off.
o. Key in . 5 CHS dB LIMITS LO through the keyboard. The LIM annunciator should light.
p. Key in 0 REF LEVEL dB through the keyboard. The LED display should indicate 00.00 , the LIM annunciator should be off and the dBm annunciator should be lighted.
q. Press the MODE PWR key. The LED display should indicate approximately 1.000 mW .
r. Disconnect the sensor from the POWER REF connector.

3-11. OPERATING INSTRUCTIONS.

3-12. Measurement Parameters.

a. General. Measurement parameters are entered into the microprocessor through the front-panel keyboard. In order to eliminate the need for repeated reprogramming, parameters entered through the keyboard are stored in non-volatile memory, and the stored parameters are unaffected by instrument turn-off and turn-on. It is important to re member that the last used para meters are stored in the instrument because these stored parameters could cause what may appear to be erroneous indications when subsequent measure ments are made. For exa mple: if the instrument had been programmed for operation with sensor 2 and sensor 1 is used instead, the LED display may be inaccurate if a GHz calibration factor is entered because the sensor 2 calibration factors will be used by the microprocessor instead of the sensor I calibration factors. If there is any question about stored measurement values, the last entered values can be recalled for display as described in subparagraph b below. Measurement para meters may be changed at any time.

NOTE:

When the instrument is in the store or recall mode, the LED display and the annunciators blink on and off. This feature is intended to alert the operator to the fact that the displayed value is not a measured value; it is a value that has been recalled from the instrument memory or that is to be entered into memory.
3-13. Use of Numerical Keys. The numerical keys are used to enter numerical values for dBLIMITS , CAL FACTOR, SELECT, and REF LEVEL dB functions. Whenever any numerical key is pressed. the microprocessor interrupts the measurement operation to accept new data. Numerical values are keyed in normal sequence, and keyed-in values enter the LED display from right to left. Up to four digits, plus decimal point and minus sign can be entered; entries exceeding four digits are ignored. Pressing the decimal point key places a decimal point after the right-most digit in the LED display. Pressing the CHS key changes the sign of
the entry in the LED display; that is, plus becomes minus, or minus becomes plus. (The plus sign is not displayed.) If an error is made during entry of numerical values, press the CLR key and repeat the data entry process. When the LED display shows the desired numerical value, pressing the applicable dB LIMITS, CAL FACTOR, SELECT, or REF LEVEL $d B$ key will cause the microprocessor to store the keyed in parameter and return automatically to the measurement cycle. Recall of the last entered values is accomplished by depressing the dB LIMITS HI, dB LIMITS LO, CAL FACTOR dB, CAL FACTOR GHz, SELECT CHNL, SELECT SENS, or REF LEVEL dB keys, as applicable. The value stored for the selected para meter is displayed on the LED display. When a recall is performed, the instrument remains in the recall state until either a MODE key or a RANGE key is depressed: the instrument then returns to the operating state.

3-14. SELECT Function. The SELECT keys are used by the operator to specify the number of the sensor to be used for measurements, and the measurement channel.

IMPORTANT NOTE:

For normal operation, the CHANNEL and sensor must be selected before any operation is performed, however, the CHANNEL must be selected before the sensor is selected.
a. The basic insirument contains only one measurement channel. This measurement channel is designated channel 1, and the front-panel SENSOR connector provides the input to this channel. An option is available for addition of a second measurement channel. When this option is included. the additional channel is designated channel 2 . and input power level.s are applied to this channel for measurement through a rear-panel connector. To further enhance the usability of the instrument, a channel 3 mode may be exercised. When channel 3 operation is specified, channel I and channel 2 levels are measured and compared by the microprocessor, and the difference in relative dB (with the channel 2 level as the reference) is displayed on the LED display Channel I measurements, channel 2 measurements or the channel 3 function can be selected using the numerical keys and the SELECT CHNL key.

Example: To select the channel I inpur for measurement:

> Press
> 1
> SELECT CHNL
b. Calibration data for up to eight sensors can be stored in the instrument. In order to use the proper callibration data when the CAL FACTOR GH/ function is selected, the microprocessor must be advined as to which sensor in being used. The SELECT SENS key in used in compunction with the numerical keys for this purpose. The semsor number is shown on the barrel of each vensor.

Section III Operation

Example: To specify sensor number two:

Press	Display
2	0002
LECT SENS	

c. Sensor serial numbers are stored in the non-volatile memory. To recall sensor serial numbers:

Press	Display
- key,	will respond with the serial number stored in memory.
$\frac{\text { SENS }}{\cdot S / N}$ key.	men

3-15. MODE Selection. The MODE keys enable the operator to select the desired measurement mode. When the MODE PWR key is pressed, measured power levels are displayed in $\mathrm{mW}, \mu \mathrm{W}$, or nW ; the annunciators associated with the LED display indicate the appropriate unit. When the MODE dB key is pressed, measurement values are displayed in terms of $d B$ with respect to an operatorentered dB reference level. If 0 dB had been chosen as the reference level, the displayed numerical values represent dBm , and the dBm annunciator is lighted; selection of any other dB reference level causes lighting of the dBr annunciator, and displayed measurement values represent dB with respect to the selected reference level. Resolution of the instrument in the dB mode is 0.01 dB .

3-16. RANGE Selection. The RANGE keys enable the operator to select either automatic ranging or a range hold function. The automatic ranging function, which is most effective when measuring unknown or wide varying power levels, is activated by pressing the RANGE AUTO key, and the microprocessor then selects the appropriate measurement range automatically. If input power levels exceed the upper measurement limit of the instrument, an errorindication (cc04) appears on the LED display; if input power levels are below the low measurement limit of the instrument, the instrument displays cc03. Ranging time is a function of a number of factors such as absolute level, change in level, analog response time, and direction of change (See Figure 1-2 and 1-3). The range hold function is useful when a series of measurements of approximately the same power level are to be made; selecting this mode eliminates delays due to ranging time. The range hold function is useful only in the PWR mode. When the RANGE HOLD key is pressed, the instrument remains on the measurement range that was active at the time the key was pressed. Input power levels that exceed the upper limit of this range cause an errorindication (cc04) on the LED display; input power levels below the low limit of this range result in fewer significant digits in the LED display. If the minimum capability of the instrument is reached, the instrument diplays cc03.

3-17. dB LIMITS Selection. The dB LIMITS keys enable the operator to program high and low dB limits into the instrument. Input power levels outside these limits will cause lighting of the LIM annunciator and activation of out-of-limit signals at rear-panel connector P3.
a. Limits are entered by keying in the numerical value in $d B$, using the numerical keys, and then pressing the $d B$ LIMITS LO or dB LIMITS HI key, as applicable.

Example: To enter a low limit of -31.34 dB :	
Press	Display
3	0003
1	0031
3	0031
3	031.3
4	31.34
CHS	-31.34
dB LIMITS LO	

b. The dB limits always test against the value displayed. If the measurement is in $\mathrm{Bm}(0$ REF L.EVEL BB), the limit is in dBm . If any value other than 0 dB is chosen for the reference level, the limits operate in ABr (relative dB), which is the displayed value. If it is desired to have the limits operate on dBm when the REF LEVEL is other than 0 dBm , the value entered as the REF LEVEL should be subtracted algebraically from the desired dBm limits (reverse the sign of the REF LEVEL $d B$ and add algebraically to the desired limit in dBm).
c. The dB limit function is always operative in the instrument. For all practical purposes, it can be cancelled, if desired, by entering a high limit of 90 dB and a low limit of -90 dB .

3-18. CAL FACTOR Selection. The sensors used with the instrument are frequency sensitive; that is, with a constant input power level applied, their output signal level does not remain constant as the measurement frequency is changed. The CAL FACTOR keys provide means for introducing a calibration factor in terms of one or two parameters; either the actual dB calibration factor, or the measurement frequency.
a. A calibration chart is attached to the barrel of each sensor, and the calibration factor in dB for the measurement frequency being used can be computed from this chart. This dB calibration factor can then be entered into the instrument, using the numerical keys and the CAL FACTOR dB key, and the microprocessor will correct all subsequent measurements, both dB and power, automatically in accordance with the dB calibration factor entered.

Example: To enter a dB calibration factor of -0.3 dB :

Press	Display
$\mathbf{3}$	0000.
CHS	000.3
H.	-000.3

CAL FACTOR dB

b. Reading and interpolation of the calibration chart can be tedious and subject to error or inaccuracy. The CAL FACTOR GHz function provides a simple, alternative method for calibration data selection. Calibration data for up to eight sensors can be stored in the memory; such calibration data may be entered into storage at the factory or in the field. When the sensor number and the measurement frequency are entered through the keyboard, the microprocessor computes the required correction from the stored data and corrects subsequent dB and power measurements accordingly. The sensor number is entered using the SELECT function described in subparagraph g: the measurement frequency is entered using the numerical keys and the CAL FACTOR GHz key. To recall the last entered frequency for display, press the CAL FACTOR GHz key; to determine the calibration factor value for this frequency, press the CAL FACTOR dB key. Press a MODE key or a RANGE key to return the instrument to the operate mode.

Example: To specify a measurement frequency	
Press	Display
3	0003
3	0003.
CAL FACTOR GHz	003.3

3-19. REF LEVEL dB Selection. The instrument normally uses $1 \mathrm{~mW}, 50$ ohms as a reference for computing dBm measurement values; the dBm annunciator is lighted during sucn operation. The REF LEVEL dB key, used in conjunction with the numerical keys, enables the operator to select any other desired dB reference level; subsequent level indications are with respect to the selected reference, and this display mode is indicated by lighting of the dBr annunciator.
a. A dB reference level is entered by keving in the desired numerical value in dB , using the numerical keys, and then pressing the REF LEVEL dB key.

Example: To enter a dB reference level of -15.3 dB :

		Annunciators	
Press	Display	$\mathbf{d B m}$	$\mathbf{d B r}$
1	0001	Lighted	Off
5	0015	Lighted	OIf
-	0015.	Lighted	OIf
3	015.3	Lighted	Off
CHS	-015.3	Lighted	Off
REF LEVELdB	Off	Lighted	

b. To return to the dBm measurement display mode, enter a 0 dB reference level, or press the CLR and REF LEVEL dB keys.

Example:

		Annunciators	
Press	Display	$\mathbf{d B m}$	$\mathbf{d B r}$
0	0000	Off	Lighted
REF LEVEL dB	Lighted	Off	

NOTE:

The maximum display capability of the LED display is $\pm 99.99 \mathrm{~dB}$. When operating in the dBr mode, keep this fact in mind. Avoid choice of dB reference levels that will result in display values that exceed the LED display capacity. Keyboard entries beyond the capability of the instrument produce error indications (cc 01 or cc 02 for entires too small or too large, respectively).
c. The displayed JBm may also be used as the reference level. This in atcomplished by first depreswing the decimal point key and then the REF LVL dB key.
The display will indicale $O(O)$ (K) showing that the previously displayed dBun level has now become the REF L.EVEL. This relerence may be recalled by pressing the REF LEVEL dB key: it can be cleared by deprensing the CLR and then the REF LEVEL dB keys.
Note that this entry method utilizes the current dBm level, and would replace any previously entered $d B$ reference level. Note also that this procedure of entering the existing dBm level as the dB reference level is not operative in IEEE-488 bus interface operation (Appendix A).

3-20. Entry Limits. Limits for entry of parameter values are as liollow:
a. CAL FACTOR dB: 3.(0) $(1)-3.0)$
b. CAL FACTOR GHz: 0.0 GHz to 999 GHz (sensor dependent) with minimum increment of 0.1 GHz
c. REF LEVIEL JB: 0 (1) ± 99.99, with minimum incre. ment of 0.01 dB
d. لBB IIMITS LO and UB LINITS HI: 0 to ± 99.99, with minimum increment of 0.01 dB .

3-21. Recall of Entered Values. The last entered valuc for cach of the corresponding functions may be recalled for display on the I.ED di.play by pressing the following hey:
(ib Linuts L.O)
di3 IIMITS HI
CAL. FACTOR IB CAL FACTOR GHz

SELLECT SENS
SELIECT CHNI.
REF LIVVEI. dI

After any of the above keys are pressed, the instrument remains in the recall mode. To return to the operating mode, press any of the MODE keys or RANGE keys.

NOTE

When the instrument is in the recall mode, the LED display and the annunciators will blink on and off.

3-22. Zeroing the Instrument. For greatest accuracy, especially on the most-sensitive ranges, the instrument must be zeroed. Zeroing is accomplished by depressing the ZERO key with zero power applied to the sensor.
The zeroing period is composed of two parts. When the ZERO key is depressed, a range-dependent "waiting period " occurs first: it is followed by the actual zero acquisition for each range. The purpose of the waiting period is to permit the sensor, and the instrument's analog and digital circuits, to reach a clear (zero) state. The higher the level of the signal prior to zeroing, the longer the waiting period required.

NOTE

When the instrument is first turned on, two successive zeroing operations should be performed.

A TTL-compatible signal (true high), marking the beginning of the zeroing operation, is a vailable at Pin 3 of P 3 on the rear panel. If this signal is utilized to remove incoming power to the sensor, the waiting period will automatically become range-dependent. If this TTL signal is not utilized, the same results can be achieved by depressing the ZERO key immediately before removing the incoming signal from the power sensor. If the incoming signal is removed prior to depressing the ZERO key, the instrument will immediately begin down-ranging-which would result in a shorter waiting period than is desirable. In such an event, a second zeroing operation should be used.

If the rear-pane! ($\mathrm{Pin} 3, P 3$) power-removal signal is not utiiized, signal power must be removed immediately following depression of the ZERO key. If signal power remains connected to the sensor during the zeroing operation, an erroneous set of zeroes will be generated.

During the warm-up period, and whenever ambient conditions are changing, the instrument should be zeroed frequently if the lowest ranges (i.e. highest-sensitivity ranges) are heing used.

The display during the zeroing period will indicate ecec. On completion of zeroing, and if no signal is being applied to
the sensor, the display will indicate $\mathbf{c c} 03$. If a signal is being applied, and if the rear-panel ($\mathrm{Pin} 3, \mathrm{P} 3$) power-disconnect signal is being utilized, the display will indicate the power being supplied to the sensor.

The approximate zeroing times, including the "waiting periods," are listed in Table 3-2.

TABLE 3-2. INSTRUMENT ZEROING TIME

Sensor Series					Zeroing Time (Seconds)
$4200-4$	$\begin{gathered} \text { 4200-5 } \\ \text { dBm } \end{gathered}$	$\begin{gathered} \text { 4200-6 } \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} 4200-7 \\ \mathrm{dBm} \end{gathered}$	$\begin{gathered} \mathbf{4 2 0 0 - 8} \\ \mathrm{dBm} \end{gathered}$	
+10	+20	+30			22
0	+10	+20			20
-10	0	+10			18
-20	-10	0	+10	+20	16
-30	-20	- 10	0	+10	14
-40	-30	-20	-10	0	12
-50	-40	-30	-20	-10	10

3-23. Calibrating the Instrument. The instrument incorporates a power reference and automatic calibration facilities for fine sensitivity corrections. Sensitivity corrections are limited to a maximum of approximately $\pm 3.5 \%$ from the original, factory set values as a precautionary measure. This feature protects against gross miscalibration which might occur if calibration were attempted with a power level other than that supplied by the power reference applied to the sensor. If computed calibration corrections from the factory set value exceed approximately $\pm 3.5 \%$, the instrument rejects the sensitivity correction and reverts to its previous sensitivity. To use the calibration function, proceed as follows:
a. Program the instrument for power mode, autorange, and the appropriate measurement channel and sensor.
b. Enter a calibration factor of 0 dB through the keyboard.
c. Connect the sensor to the POWER REF connector.
d. Press the CAL key. The LED display should indicate $1.000 \mathrm{~mW} \pm 0.1 \%$ ($\pm 0.4 \%$ for $4200-5$ sensors).

NOTE

If the instrument is supplied with a 75 -ohm sensor (4200-4C), an adapter ($P / N 950006$) is also supplicd. Use this adapter between the POWER REF comnector and the sensor to convert the Type N POWER

REF connector to a 75 -ohm Type N. Before calibration, enter a 1.76 dB CAL FACTOR to compensate for the mismatch error that is introduced by the 75-ohm sensor.

3-24. Error Messages. Under certain conditions, the LED display returns error messages as follows:

Display	Condition
$\operatorname{cc01}$	Illegal entry, too low
$\operatorname{cc02}$	Illegal entry, too high
$\operatorname{cc03}$	Signal level out of range (low) $\operatorname{cc04}$
$\operatorname{cc05}$	Signal level out of range (high) Zero acquisition out of range-excessive nega- tive offset (hardware malfunction)
$\operatorname{cc06}$	Zero acquisition out of range-excessive positive offset (input too large)
$\operatorname{cc07}$	Signal level out of range, one channel high, one channe! low, in channel 3 mode of operation.

3-25. MEASUREMENTS.

3-26. Making Power Measurements. Once the instrument has been programmed, calibrated, and zeroed, it is ready for power level measurements. Merely connect the sensor to the source whose power level is to be measured. The power level will be displayed directly on the LED display.

3-27. Low-Level Measurements. The instrument will provide reliable, reproducible measurements of CW, AM, and FM power leveis as low as $\operatorname{InW}(-60 \mathrm{dBm})$. It can also be used for pulse measurements but with slightly decreased accuracy ($\pm \mathrm{dB}$). Peak power levels for pulse measurements should not exceed $200 \mu \mathrm{~W}(20 \mu \mathrm{~W}$ for Series $4200-4$ sensors); above this level the sensor enters the region where it operates out of the square-law region, and accuracy at such signal levels is correct for CW and FM only.

3-28. High-Level Measurements. Zeroing of the instrument is not critical when making high-level measurements ($10 \mu \mathrm{~W}$ to 1 W). CW and FM power measurements can be obtained within the specitied accuracy up to 1 W ; accuracy cannot be guaranteed for pulse power measurements with instantaneous ($35 \mu \mathrm{~W}$ for Series 4200 -4 sensors) peaks exceeding $350 \mu \mathrm{~W}$.

3-29. High-Frequency Measurements. At frequencies abovve 1 GH 7 , the appropriate sensor calibration factor nust be entered through the keybord if the specified aceuracy of the instrument is to be realized. (Refer to paragraph 3-18).

NOTE

Model 4200-4A, 4200-4B, 4200-4E, 4200-5B, 4200-
$5 E, 4200-6 E$, and $4200-7 E, 4200-8 E$, and Waveguide Sensors are calibrated for use with a 50 -ohm source; model $4200-4 \mathrm{C}$ sensors are calibrated for use with a 75 -ohm source. Impedance mismatch results in increased SWR, which affects measurement accuracy. This effect can be reduced by inserting a low-SWR attenuator (SWR less than 1.10) or a low-loss tuner between the source and the sensor.

3-30. Temperature Effects. Specified instrument accuracies apply over an ambient temperature range of $21^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. Operation outside this temperature range causes some additional error. Refer to table $1-1$ for accuracy versus temperature. Figure 3-3 shows typical temperature characteristics of sensors, and Figure 3-4 shows typical temperature characteristics of the instrument and sensors combined.

NOTE

For best zero stability of the instrument, allow the instrument and sensor to reach a stable temperature.

3-31. SWR Measurements. The high upper-frequency limit and sensitivity of the instrument facilitate SWR measurements with a slotted line. SWR measurements require only comparative, rather than absolute, measurement values; therefore, the instrument may be used up to 20 GHz with a model $4200-4 \mathrm{E}$ sensor. The front-panel meter is especially useful for rapid determination of maximum and minimum power points. SWR is determined by measuring the dB difference between a maximum and a minimum voltage point on a slotted line and converting this difference to SWR. An adapter, usually available from the slottedline manufacturer, is required to couple the sensor to the slotted line. To make slotted-line SWR measurements, proceed as follows:
a. Connect the sensor to the sliding carriage, using a suitable adapter.
b. Ascertain that the signal source is turned off; then, zero the instrument.
c. Turn on the signal source and slide the carriage along the slotted line until a point of maximum indication is located. Adjust the source signal level and the probe setting for the least coupling that yields a -41 dBm reading at the maximum point. (The incident power should be at least 0 dBm .)
d. Slide the carriage along the slotted line until a minimum indication is located. Read the level at this point. Subtract the measured level at the minimum point from that at the maximum point, ignoring signs. Convert the resultant $\Delta \mathrm{dB}$ into SWR , either through use of the SWR conversion chart (Figure 3-5) or by computation. SWR is the antilog, base 10 , of $\Delta \mathrm{db} / 20$.

Section III

 Operation

Figure 3-3 Typical Temperature Characteristics of Series 4200 Sensors

Figure 3-4 Typical Combined Temperature Characteristics of Instrument and Sensor

Figure 3-5 dB-SWR Conversion Chart

3-32. Shielding Recommendations. If the instrument is subjected to strong noise fields, accurate zeroing may be difficult unless the sensor is shielded during the zeroing operation. The simplest method of shielding is to connect the sensor to the device whose power level is to be measured, first making sure that the device is turned off; however, in some instances, the device may act as an antenna and introduce additional noise voltage into the sensor. If this happens, disconnect the sensor from the device, stand the sensor, end down, on a copper plate, and hold it down firmly so that the rim of the sensor connector makes good contact with the copper plate at all points. Alternatively, wrap a piece of thin copper foil around the threaded portion of the connector body, and crimp the foil around the open end of the connector, making certain that the center pin of the connector is not shorted. If frequent zeroing in strong noise fields is necessary, construct an adapter, using a Type N connector permanently fitted with a copper foil shield.

3-33. Analog Output. A dc voltage proportional to either power or dBm is available at rear panel recorder connector J20 for recorder or other applications. This output voltage will be affected in both power and dB
modes by calibration factor entries. The source resistance of the recorder ourput is approximately 9000 ohms, permitting a current of 1 mA into a load of 1000 ohms at full scale power. Output levels for various measurement modes are as follows:
a. In the power mode, the dc output level is proportional to the displayed power, with 10 volts at full scale for each range.

* b. In the dB mode. the dc output level is proportional to dBm according to the formula (Series $4 / 7 / \mathrm{K} / \mathrm{KA} / \mathrm{Q}$ Sensors)

$$
\text { V OUT }=\left(8+\frac{d B m}{10}\right) \text { volts }
$$

Example:

The voltage output at -20 dBm would be:

$$
\left(8+\frac{-20}{10}\right) \text { volts }=6 \text { volts }
$$

This output is a function of dBm only, but is affected by CAL FACTOR entries.

* c. In the Channel-3 mode of operation (Option -03), the recorder output is proportional to the difference in dB of channel 1 minus Channel 2 . This output is affected by both the calibration factors and the dB reference levels entered in each channel. The equation is:

RECORDER OUT (VOLTS)

$$
\begin{aligned}
& =\left[\frac{(\mathrm{dBch} .1+\mathrm{dB} \mathrm{CAL} \mathrm{FACT} \mathrm{CH1-dB} \mathrm{REF.ch.1)}}{10}\right. \\
& \left.-\frac{(\mathrm{dBch} .2+\mathrm{dB} \mathrm{CAL} \mathrm{FACT} \mathrm{CH} 2+\mathrm{dB} \mathrm{REF.ch.2)}}{10}+8\right] \\
& \text { Or. equivalent: } \\
& \text { RECORDER OUT (VOLTS })=\frac{\mathrm{dB}_{\text {display }}}{10}+8
\end{aligned}
$$

Valid recorder outputs will be obtained for display indications of -80 dB (0 volts) to +30 dB (11 volts).

3-34. MINIMUM PERFORMANCE STANDARDS.

3-35. Test Equipment Required. For minimum performance testing of the instrument, an adjustable power source, such as the Boonton Electronics Corporation Model 25A Power Meter Calibrator, and a dc voltmeter or oscilloscope capable of measuring 0 to +10 volts are required.

3-36. Preliminary Setup.

a. Turn on the instrument and the adjustable power source and allow sufficient warmup time. If either unit had been stored at ambient temperatures substantially different from the ambient temperature at the minimum performance test facility, make sure enough time is allowed for each device to reach ambient temperature.
b. Set the adjustable power source output to zero, and connect the sensor between the adjustable power source and the front-panel SENSOR connector of the instrument, using the sensor cable.
c. Key in the following measurement parameter data through the keyboard:

```
I SELECT CHNL
N SELECT SENS (N = number of sensor being used)
MODE dB
RANGE AUTO
dB LIMITS - any
O CAL FACTOR dB
0 REF LEVEL dB
```


NOTE

Maintain the same measurement parameters
for each of the following tests unless specifically directed otherwise.

3-37. Automatic Zero Function Test. To check the automatic zeroing function of the instrument, proceed as follows:
a. Ascertain that the signal input to the sensor is zero.

NOTE

Do not confuse 0 dB with zero input. For zero input to the sensor, turn off the adjustable power source.
b. Press the ZERO key and ascertain that the logic signal level at pin 3 of rear-panel connector P3 switches from a logic low to a logic high when the ZERO key is pressed, remains high throughout the zeroing period (approximately 26 seconds), and returns to a logic low at the end of the zeroing period. During zeroing, the frontpanel LED display should show the following:

Display	Comment
ccce	Zeroing
cc03	Zeroing comple:e

3-38. Autoranging Mode Test. To check the autoranging function of the instrument, set the output level of the adjustable power source to each of the values listed below and ascertain that the instrument LED display readout agrees with the input power level within $\pm 0.2 \mathrm{~dB}$

$$
\begin{array}{r}
+10 \mathrm{dBm} \\
0 \mathrm{dBm} \\
-10 \mathrm{dBm} \\
-20 \mathrm{dBm} \\
-30 \mathrm{dBm} \\
-40 \mathrm{dBm} \\
-50 \mathrm{dBm}
\end{array}
$$

NOTE

For lowest ranges, rezero if necessary.

3-39. Range Hold Function Test. To check the range hoid function of the instrument, proceed as follows:
a. Set the output level of the adjustable power source to 0 dBm .
b. Press the RANGE HOLD key and the MODE PWR key.
c. Ascertain that the LED display readout is 1.000 $\mathrm{mW} \pm 1.2 \%$.
d. Set the adjustable power source output to each of the following levels in succession, and ascertain that the
corresponding listed LED indications are obtained on the instrument:

Power Source Level
10 mW
1 mW
$100 \mu \mathrm{~W}$
$10 \mu \mathrm{~W}$
Instrument Indication
cc04 (power level too high)
1.000 mW
0.100 mW
0.010 mW
or cc 03 (if less than 10 counts; power level too low)
e. Press the RANGE AUTO key.

NOTE

When the range hold function is selected, input power levels greater than the power decade operative when the selection was made will result in overranging of the instrument and display of an error indication; lower input levels result in a decrease in the number of significant digits in the display. Note that the decimal point and annunciator remain fixed.

3-40. Basic Instrument Accuracy Test. To check the basic accuracy of the instrument, proceed as follows:
a. With zero input to the sensor (adjustable power source turned off), zero the instrument by pressing the ZERO key.
b. Connect the sensor to the POWER REF connector. Press the CAL key.
c. Upon completion of calibration, press the MODE dB kev, and connect the sensor to the adjustable power source.
d. Set the output level of the adjustable power source to each of the following dBm values in succession, and ascertain that the LED display readout agrees with the output level of the adjustable power source within the specified $d B$ limits:

```
Power Source Level
    -50 dBm
    -40 dBm
    -30 dBm
    -20 dBm
    -10 dBm
        0 dBm
        +10 dB m
        -1 dBm
        -2 dBm
        -3 dBm
        4 dBm
        -5 dBm
        -6 dBm
```

 LED Display Tolerance
 \(\pm 0.1 \mathrm{~dB}\)
 \(\pm 0.05 \mathrm{~dB}\)
 \(\pm 0.055 \mathrm{~dB}\)
 \(\pm 0.06 \mathrm{~dB}\)
 \(\pm 0.065 \mathrm{~dB}\)
 \(\pm 0.07 \mathrm{~dB}\)
 \(\pm 0.075 \mathrm{~dB}\)
 \(\pm 0.08 \mathrm{~dB}\)
 | Power Source Level | LED Display Tolerance |
| :---: | :---: |
| -7 dBm | $\pm 0.085 \mathrm{~dB}$ |
| -8 dBm | $\pm 0.09 \mathrm{~dB}$ |
| -9 dBm | $\pm 0.095 \mathrm{~dB}$ |

NOTE

If the dBm indications are within limits, it may be assumed that power mode indications are also within limits; $d B m$ indications are computed from power measurements within the instrument.

3-41. Power Mode Test. To test operation of the instrument in the power measurement mode, proceed as follows:
a. Without disturbing any measurement parameters used in preceding paragraph, adjust the output level of the adjustable power source to 0 dBm and ascertain that the LED display of the instrument indicates 0 dBm $\pm 0.05 \mathrm{~dB}$.
b. Press the MODE PWR key. The LED display should indicate $1.00 \mathrm{~mW} \pm 1.3 \%$.
c. If desired, other power levels may be checked in similar fashion. To determine the proper power indication for a specific dBm input level, use the formula:

$$
P=\log ^{-1} \mathrm{~dB} / 10(\mathrm{~mW})
$$

3-42. Calibration Test. To check the automatic calibration capability of the instrument, proceed as follows:
a. Set the power source to 1.0 mW .
b. Select the power mode and autoranging.
c. Enter a 0 dB calibration factor.
d. Note the indication of the LED display. If the indicatton is not 1.000 mW , press the CAL key, and ascertain that the indication is now $1.000 \mathrm{~mW} \pm 2$ counts (± 4 counts with 4200-5 sensors).
e. If an indication of exactly 1.000 mW is obtained originally in step d, enter a calibration factor of 0.03 dB to cause the indication to increase to approximately 1.01 mW . Then, press the CAL key and ascertain that the indication changes to $1.000 \mathrm{~mW} \pm 2$ counts. Enter a 0 dB calibration factor and press the CAL key to restore the original indication.
f. The atutomatic CAL function is operative at all 10 dB points if a suitable signal source is available: operation is as in steps a thru e, except for the input signal level and range.

NOTE

For greates overall accuracy, however, it is srongly recommended that this feature be used with the 50

Section III

Operation

MHz power reference which provides an accurate 1 mW level.

3-43. Sensor Selection Test. Entry of the correct number for the sensor in use is absolutely essential for instrument accuracy. Data for each sensor supplied with the instrument has been entered and stored in microprocessor memory at the factory. Stored data consists of functions peculiar to each sensor, such as sensitivity, calibration factors, etc. A direct, absolute check of the sensor data is not possible; however, the basic instrument accuracy test (paragraph $3-40$) and the calibration test (paragraph 3-42) provide a good indication of satisfactory operation of the sensor selection function. Entry of an incorrect sensor number will probably result in degradation of basic accuracy. Sensor serial numbers can be recalled from non-volatile memory by keying in a decimal point followed by SELECT SENS.

3-44. dB Reference Level Function Test. To check the dB reference level function of the instrument, preceed as follows:
a. Set the output power level of the adjustable power source to 0 dBm .
b. Press the MODE dB key and ascertain that the LED display indicates $0 \mathrm{dBm} \pm 0.05 \mathrm{~dB}$.
c. Enter a -10 dB reference level by pressing the following keys:

0
CHS
REF LEVEL dB
d. Ascertain that the LED display now indicates +10 $\mathrm{dBr} \pm 0.05 \mathrm{~dB}$. The dBm annunciator should be off, and the dBr annunciator should be lighted.
e. Reset the instrument to indicate dBm by pressing the following keys:

0

REF LEVEL dB

f. Ascertain that the LED display again indicates 0 $\mathrm{dBm} \pm 0.05 \mathrm{~dB}$. The dBm annunciator should be lighted, and the dBr annunciator should be off.

3-45. dB Limit Test. To check operation of the dB limit circuits, proceed as follows:
a. Set the output level of the adjustable power source to 0 dBm .
b. Enter $a+1 d B$ high limit by pressing the following keys:

1

dB LIMITS Hi
c. Enter a -1 dB low limit by pressing the following keys:

1

CHS

dB LIMITS LO
d. Ascertain that the LIM annunciator is off.
e. Set the output level of the adjustable power source to -2.0 dBm . The LIM annunciator should light. The logic level at pin 5 of rear-panel connector P3 should be high the logic level at pin 4 of connector P3 should be low
f. Set the output level of the adjustable power source to +2.0 dBm . The LIM annunciator should be lighted. logic level at pin 4 of rear-panel connector $P 3$ should be high; the logic level at pin 5 of the connector P3 should be low.

NOTE

Limits can be entered only in terms of $d B$, not power: however, the limit function operates in both the dB mode and the PWR mode.
g. Set the input level to-7dBm. Press the CLR and the REF LEVEL dB keys: the indication should be approxi mately -7.00 dB . Press the decimal-point and the REF LEVEL dB keys: the display should now indicate 00.00 dBr . Recall the dB reference level by pressing the REF LEVEL dB key: the indication should be -7.00 , showing that the original dBm level is now stored as the dB reference level. Press the CLR and the REF LEVEL dB keys: indication now should be -7.00 dBm , showing that the reference level is now 0 dBm . Note that, as discussed paragraph 3-19 (page 3-8), this method of entering current dBm level as the dB reference level is operative only in the local mode-not in 1EEE-488 interface mode.

3-46. Calibration Factor Test. To check operation the calibration factor function, proceed as follows:
a. Set the output level of the adjustable power source to 0 dBm .
b. Press the MODE dB key and note the indication on the LED display.
c. Enter a 0.2 dB calibration factor by pressing following keys:

```
            0
        2
CAL FACTOR dB
```

d. Ascertain that the indication on the LED display equal to the value noted in step b plus 0.2 dB .
e. Enter a 2 GHz calibration factor by pressing the following keys:

2

CAL FACTOR GHz

f. Determine the calibration correction for 2 GHz from the chart on the barrel of the sensor. Ascertain that the

LED display indicates the value noted on the chart on the sensor barrel.

NOTE

For proper calibration factor correction and instrument accuracy, it is essential that the sensor number entered into the instrument prior to measurement agrees with the number indicated on the barrel of the sensor used for the measurement. Calibration factors that are invoked are operative in both the dB mode and the PWR mode.

NOTE

If the instrument is equipped with the -03 option, repeat the minimum performance standards tests for channel 2.

SECTION IV THEORY OF OPERATION

4-1. INTRODUCTION.

4-2. The instrument is a general purpose RF microwattmeter capable of measuring power levels from I $\mathrm{nW}(-60$ $\mathrm{dBm})$ to $1 \mathrm{~W}(+30 \mathrm{dBm})$. It is designed to operate in conjunction with Boonton Electronics Corporation Series 4200 power sensors. The usable frequency range depends upon the sensor used with the instrument. The lowest usable frequency for calibrated measurements is 0.2 MHz ; the highest frequency is 110 GHz .
43. The instrument is a completely solid-state unit that employs a microprocessor for versatility in use. The microprocessor is controlled by a permanently stored, internal program; pertinent operating parameters can be entered by means of a front-panel keyboard. Use of a microprocessor enables automation of numerous functions, such as zeroing, calibration, sensor calibration, range selection, unit conversion, dB limit testing, relative dB measurements, etc. Measured values are displayed directly on a 4 digit LED display in terms of $n W, \mu W$, $\mathrm{mW}, \mathrm{dBm}$, or dBr (relative dB). Annunciators associated with the display indicate the unit of measurement. A meter is also provided for relative power measurements; this feature simplifies such operations as nulling and peaking.

4-4. OVERALL BLOCK DIAGRAM.

(See Figure 4-I.)
4-5. Sensor. Power levels to be measured are applied to an external sensor, which is connected to a front-panel connector through a five-foot sensor cable. Input power appears across a precision resistor (50 or 75 ohms, depending upon the sensor model). Because the resistance value is constant, the voltage developed across the resistor is a function of input power ($\mathrm{E}^{2}=\mathrm{PR}$). The RF voltage developed across the resistor is converted to a DC voltage, and the resulting DC voltage is applied to the input module of the instrument.
46. Input Module. The input module receives the DC voltage developed by the sensor. Operating under control of the control module, the input module converts the DC signal to an $A C$ signal, amplifies the $A C$ signal, converts the amplified AC signal to an analog DC signal, and converts the analog DC signal to a digital signal. If the autoranging function of the instrument is being used, the gain of the amplifiers in the input module is adjusted automatically by the control module to accommodate any power level within the range of the instrument. The digital out put signal of the input module is supplied to the
control module for further processing, an analog DC output signal is developed from the digital signal and applied to the analog meter on the display module for relative power measurements, and to a rear-panel connector for application to a peripheral recorder.
47. Control Module. The control module consists primarily of a pre-programmed microprocessor. The microprocessor accepts and stores measurement parameter commands entered through the front-panel keyboard, and controls operation of the internal circuits of the instrument in accordance with its program and keyedin commands. The microprocessor performs measurement value corrections based on stored zero corrections and stored or keyed-in sensor calibration factors, unit conversions based on selected measurement modes, and dB limit determination. The microprocessor also performs automatic instrument zeroing and calibration. The processed digital signal, which defines the final measurement value, is applied to a data bus and to the display module.
48. Display Module. The display module contains the keyboard and LED display circuits. Parameters to be used for power measurements can be entered at any time through the keyboard. Keyed-in values are read and stored by the microprocessor, and selected numerical values are shown on the LED display during parameter selection. Computed power levels are processed by the microprocessor in accordance with the keyed-in parameters; the digital values representing the final computed measurement values are decoded by the display module circuits to produce a direct LED readout of measured values and to activate the appropriate annunciators.

4-9. Power Reference. The power reference module generates a precision, $1.00 \mathrm{~mW}, 50 \mathrm{MHz}$ signal that is used for calibration of the instrument. When this signal is applied to the sensor and the front-panel CAL key is pressed, fine sensitivity adjustments of the instrument are performed automatically under microprocessor control.

4-10. Power Supply Module. The power supply module provides all DC voltages required for operation of the internal circuits. It aiso provides a reset signal to the control module when it is powered up, and an interrupt signal if an undervoltage condition is detected. The standard power supply module can be powered from a $100,120,220$, or 240 volt, 50 to 400 Hz, AC power source.

4-11. Optional Modules. Standard options are available to further increase the versatility of the instrument. Two of these optional modules are shown in Figure $4-1$.

Section IV

Theory of Operation

Figure 4-1 Overall Block Diagram
a. A second input module can be added to the instrument to permit measurement of output power levels of two devices without the need for repeated switching of sensor connections. The input connector for this optional module is located on the rear panel of the instrument. The second input module also permits LED display of the difference between the power levels of the two devices, expressed in dB.
b. The interface module provides an IEEE 488 bus interface for remote control of instrument operation and for remote display of measured values.

4-12. DETAILED THEORY OF OPERATION, SENSOR CIRCUITS.

(See Figure 4-2.)
4-13. The sensor contains two paralleled precision resistors (50 -ohm effective total resistance for Models 4200-4A, $4200-4 \mathrm{~B}, 4200-4 \mathrm{E}, 4200-5 \mathrm{~B}, 4200-5 \mathrm{E}$, and $4200-6 \mathrm{E}$, and 75-ohm effective total resistance for Model 4200-4C) across which the input power is applied. With a constant load resistance, the RF voltage developed across the load resistance is a function of the RF power ($E^{2}=P R$). The RF voltage is rectified by a full-wave rectifier that permits measurement of highly asymmetrical waveforms without sub-
stantial error. When the applied power level is within the square-law region of the diodes (up to approximately 20 $\mu \mathrm{W}$), the sensor has a true RMS response. Above this power level, the sensor response approaches peak-to-peak, calibrated in the instrument in terms of true average power.

NOTE

Series 4200-5 and 4200-6 sensors have input attenuators; this permits measurements to $100 \mathrm{~mW}(+20 \mathrm{~dB})$ and $1000 \mathrm{~mW}(+30 \mathrm{~dB})$ respectively.

4-14. The body of the sensor has been designed and fabricated very carefully to eliminate any cavity resonance effects within the calibrated frequency range and to minimize noise. The sensor diodes are specially selected for this application. The DC output voltage of the sensor is applied to the input connector of the instrument through a low-noise sensor cable.

4-15. DETAILED THEORY OF OPERATION, INPUT P.C. BOARD CIRCUITS.

(See Figure 4-3).
4-16. The input printed circuit board receives from the sensor a DC voltage that is a function of the power level being measured. Under control of the control board
circuits, it provides amplification and signal processing required to develop an analog $D C$ voltage and a digital signal that are proportional to the input $R F$ power level. The input DC signal from the sensor is balanced in form and may vary from microvolts to volts, depending upon the input power level. The input printed circuit board must provide amplification with a wide range of gain, low offset voltage, and low noise; therefore, the input DC signal is converted to an AC signal which is amplified, and the amplified AC signal is converted to a DC analog signal and to a digital signal.

4-17. The input $D C$ signal is converted to an $A C$ signal by a chopper module, which plugs into the input printed circuit board. The chopper is composed of solid-state switches ICla, ICIb, ICIc, and ICId in a balanced arrangement, operating at a frequency of approximately 94 Hz to minimize AC line and line-related component interaction. The chopper drive signal is derived from the output of an astable multivibrator, which is completely independent of line frequency. The use of a solid-state chopper eliminates many of the problems, such as contact wear and contamination, associated with electromechanical choppers. The chopper supplies a balanced AC signal of approximately 94 Hz to the input amplifier.

4-18. The 94 Hz drive signal for the chopper is derived from the output signal of astable multivibrator IC5. Multivibrator IC5 drives flip-flops IC7a and IC7b, and these flip-flops supply the-drive signal to the chopper circuits. Flip-flop IC7a also drives flip-flops IC8a and IC8b, which provide a 94 Hz , synchronized drive signal to the demodulator circuits that convert the amplified AC signal back to a DC signal.

4-19. Amplification of the balanced $A C$ signal from the chopper is accomplished in an input amplifier composed of low-noise, operational amplifiers A5, A6, and A7. A balanced arrangement with degenerative feedback for stabilization and gain control is employed. The input AC signal is amplified by $500,50,5$, or 0.5 , depending upon the instrument range. Demultiplexer IC6, under control of the control printed circuit board, adjusts the degenerative feedback in accordance with the range selected by the microprocessor to provide the required gain switching. An attenuator at the output of the input amplifier provides attenuation of 2 for the highest range only; on all other ranges its attenuator is zero. This attenuator is switched into the circuit on the highest range through solid-state switches $\mathrm{ICIOa}, \mathrm{IC} 9 \mathrm{~h}$, and IC 9 C . Demultiplexer ICI3 decodes digital signals that detine the range from the microprocessor and activates the solid-state switches on the highest instrument range.
420. The amplified 94 Hz signal is converted to a DC analog signal by means of a demodulator circuit that operates in synchronism with the chopper. The demodulator consists essentially of a sample and hold switch, composed of solid-state switches IC10b and IC10c and associated circuitry. Switches ICIOb and ICIOc are controlled by the 94 Hz drive signals from flip-flops IC8a and 1 C 8 b . The sampling point and period of the sample and hold circuit has been chosen to minimize switching products and noise, and to vary signal averaging in accordance with the signal level. Switch IC9a adjusts operating parameters automatically in accordance with instrument range; the switch is activated through gates ICIIb and ICIIC and demultiplexer ICI3 on the four highest ranges.

Figure 4-2 Typical Series 4200 Sensor. Schematic Diagram
421. The DC output voltage of the sample and hold circuit is amplified by an amplifier circuit composed of integrated circuits A8, A9, and $1 \mathrm{Cl4}$, and associated circuitry. Integrated circuits ICl4 is a demultiplexer which decodes microprocessor-supplied digital signals that define the selected range and adjusts an attenuator circuit accordingly; the gain of the amplifier is $125,12.5$, or 1.25 , depending upon the selected range. The full-scale output voltage of the amplifier is 2.25 volts nominal on each range.
422. The $D C$ output voltage of integrated circuit $A 9$ is usually unipolar and positive; however, during the automatic zeroing process of the instrument, the DC output voltage may be positive or negative, depending upon small DC offsets. Because some of the following circuits operate only with unipolar signals, a polarity switch is required. This polarity switch. which consists of solid-state switches IC3b and IC3c, operates under control of the microprocessor on the control printed circuit board, which tests for polarity. The DC voltage is routed through the polarity switch to the appropriate input of operational amplifier A3 so that the output DC from this amplifier is always negative. This output voltage is applied to a comparator circuit.

4-23. Comparator A2 operates in conjunction with the microprocessor on the control printed circuit board and D/A converter IC2 to convert the DC output signal of amplifier A3, which is proportional to the input power, to a digital signal that can be processed by the microprocessor circuits. D/A converter IC2 is supplied with successive half-leve! digital signals (full scale/2, full scale/4, ctc.) by the microprocessor. D/A converter IC2 converts these digital signals to a DC analog voltage, and this analog DC voltage is applied through amplifier Al to comparator A2, where it is compared with the DC signal from amplifier A3. The difference signal from comparator $A 2$ is supplied to the microprocessor through interface ICl so that the microprocessor can monitor the results of the comparison and adjust the digital signal accordingly. The digital signal is adjusted by the microprocessor until the two input signals to comparator $A 2$ are equal. The resulting digital signal then defines the input $D C$ level being measured. This digital signal is then processed (zero correction, calibration correction, unit conversion, etc.) by the microprocessor before application to the LED display circuits of the instrument.

4-24. After the digital signal has been fully processed by the microprocessor, the processed digital signal is again supplied by the nicroprocessor to D/A converter IC2, which converts the processed digital signal to a corresponding DC analog voltage that is used to drive the front-pancl meter and the recorder output of the instrument. This $D C$ analog voltage lrom D / A converter

IC2 is supplied through amplifier Al to sample and hold switch IC3a, which is closed at this time by a control signal from the microprocessor. The DC analog voltage at the output of the sample and hold circuit is applied through amplifier A4 and the control printed circuit board to the display printed circuit board.

4-25. All interfacing between the input printed circuit board and the microprocessor is accomplished through interface ICI. Interface ICI is an input/output device that operates under control of the microprocessor. When signal $\overline{R D}$ is activated by the microprocessor, data are transferred from the in put printed circuit board to the microprocessor, provided that signal $\overline{\mathrm{CS}}$ to interface ICl is also active; when signals $\overline{W R}$ and $\overline{C S}$ are both activated by the microprocessor, data are transferred from the microprocessor to the input printed circuit board. Data flow between the input printed circuit board and the microprocessor over the eight-line bi-directional data bus. Routing of data through the interface is controlled by the address signals supplied to the interface by the microprocessor.

426. DETAILED THEORY OF OPERATION, CONTROL P.C. BOARD.

(See Figure 4-4.)
427. The operation of the instrument is controlled by a microprocessor contained on the control printed circuit board. The control printed circuit board is organized around a central processing unit (CPU), associated memories, input/output ports, and a 40 -line bus. A stored program, in conjunction with key-entered commands, enables the microprocessor to perform a variety of functions, including the following:
a. Analog to digital conversion
b. Zero determination
c. Zero correction
d. Ranging
e. Calibration
f. Signal processing
g. Binary to $B C D$ conversion
h. dB conversion
i. dB reference conversion
j. dB limit testing
k. Diagnostics.
428. Integrated circuit 1 C 3 is the microprocessor CPU. It is an 8-bit unit that operates at a clock frequency of 2 MHz , generated by integrated circuits ICla through ICle and associated circuitry. The operating program for the microprocessor is stored in integrated circuits 1C6 and IC7, which are programmable read-only memories (PROMs). RAM IC8 provides temporary storage of data during operation of the instrument. It also stores certain measurement parameters such as, sensor data, calibration fac-

C831450A

tors, some key-entered parameters, etc. Lithium-type battery BTI, which has an anticipated life of 10 years, supplies power to RAM IC8 during power-down of the instrument to enable retention of data in memory. During normal operation, RAM IC8 is powered by transistor QI. Integrated circuit IC16 is an I/O port which interfaces with the following:
a. An 8 -bit switch used to set the mode of operation. number of channels, and number of sensors.
b. A test socket (J 3) used in signature analysis.
c. A plug (P3) for output of status information.

4-29. The CPU receives and transmits data over an eightline data bus. A 15 -line address bus is used for addressing, and a control bus is used for various control functions. When the instrument is turned off, signal $\overline{\text { RESET }}$ is activated by the power supply circuits and the microprocessor is reset to the start of the operating program; when the instrument is next turned on and DC voltages have reached the correct operating levels, the RESET signal is deactivated by the power supply circuits and the microprocessor begins to execute the stored proyram. Instructions are retrieved from storage by the CPU in accordance with the address code developed at its output. Decoder IC4 enables the appropriate PROM (IC6 or IC7), and the instruction contained in the memory location defined by the address on address lines A0 through All is read and transmitted by the CPU over the data bus. The CPU then executes this instruction.

4-30. During the measurement process, the CPU must retrieve data from storage and from the input and display printed circuit boards, it must store temporary calculaton values, and it must output data to the input and display printed circuit boards. To retrieve data from memory, the storage device and data location are defined by the address supplied by the CPU, and signals $\overline{M R E Q}$ and $\overline{R D}$ are activated. Integrated circuit IC4 decodes three of the address bits to activate signal $\overline{\mathrm{CS}}$ at RAM IC8 through gates IC9a and IC9c. Signal $\overline{O E}$ at RAM IC8 is activated through gate ICISd, and data stored at the location specified by the remaining address bits are transmitted over the data bus to the CPU or to other circuits connected to the data bus. To access data developed by circuits outside the control printed circuit board, the CPU activates signals $\overline{\mathrm{IORQ}}$ and $\overline{\mathrm{RD}}$ along with the appropriate address lines. Decoder ICI4 decodes three address bits to develop enabling signal $\overline{\mathrm{CS}}$ for interface IC 16 , integrated circuit IC18, or interface ICt on the input printed circuit board, as specified by the three address bits, and gate ICl 5 bactivates signal $\overline{R D}$ for the read function. If integrated circuit ICI8 is
enabled, keyed-in commands from the display printed circuit board, which had been stored in integrated circuit IC18, are transmitted over the data bus. If integrated circuit ICI6 is enabled, input data from bit switch SI or power supply connector P 4 , as determined by address bits A 0 and AI , are supplied through interface ICI 6 to the data bus. If interface ICl on the input printed circuit board is enabled, data generated on the input printed circuit board are transmitted over the data bus through interface ICI.
431. To store data, the CPU activates signal $\overline{W R}$ and the address lines that define the storage device and storage location. Decoder IC4 decodes three address bits to enable signal $\overline{\mathrm{CS}}$ at RAM IC8, signal $\overline{\mathrm{WR}}$ enables the write function of RAM IC8 through inverter ICld and gate IC9b, and data on the data bus are written into memory at the location defined by the remaining address lines. To output data to circuits outside the control printed circuit board, signal $\overline{\mathrm{ORQ}}$ is activated by the CPU in addition to the previously mentioned signals. Signals $\overline{I O R Q}$ and $\overline{W R}$ activate the write enable signal to the device defined by the address bits. Decoder IC14 decodes three address bits to select the appropriate device (interface ICI6, interface IC18, or interface ICI on the input printed circuit board). Data on the data bus are then transferred to the selected device. If interface IC16 is selected, these data are transferred through interface IC16 to connector P3 or J3, as determined by address bits A0 and A1. The output to connector P 3 consists of dB out-of-limit signals and an input disconnect signal which is active when the automatic zeroing function is selected. The output data at connector J3 are used in signature analysis checks. If interface IC18 is selected, the data on the data bus are written into storage in interface IC18 for application to the display printed circuit board. These data are then clocked out of storage to activate the LED display and annunciators on the display printed circuit board. If interface ICl on the input printed circuit board is selected, data on the data bus are transferred through the interface to control various functions on the input printed circuit board.
432. Connector Jl is included in the data bus on the control printed circuit board to facilitate signature analysis maintenance of the microprocessor circuits. When connector J 1 is pulled out, the data bus is disconnected from the CPU, and the CPU executes successive NOPs for free-running signature analysis checks.

4-33. The CPU receives two control signals directly from the power supply printed circuit board. If the power supply voltage should drop during operation, or on equipment turn-off, signal $N M$ is activated by the power supply circuits; the CPU, upon receipt of this signal

Section IV
 Theory of Operation

activates signal HALT, and halts further execution of the program. Signal $\overline{\text { HALT }}$ is applied to the power supply printed circuit board, where it latches signal RESET to the active state. Signal RESET, in turn, causes the microprocessor to return to the starting point of the program. When the power supply rises to a level approximately 150 millivolts below its nominal value, either as a result of correction of the undervoltage condition or of power turn-on, signal RESET is deactivated to permit execution of the stored program by the microprocessor.

4-34. DETAILED THEORY OF OPERATION, DISPLAY P.C. BOARD.
 (See Figure 4-5.)

435. The display printed circuit board contains the instrument LED display, meter, annunciators, keyboard, and control circuits for these items. It interfaces directly with the control printed circuit board. When any keyboard key is pressed, the microprocessor on the control printed circuit board interrupts the normal measurement process and accepts and stores the key-entered commands; the microprocessor also supplies digital data to the display printed circuit board to cause keyed-in numerical values to appear on the LED display; the microprocessor resumes the normal measurement process when any of the terminator keys (dB LIMITS, CAL FACTOR, SELECT, REF LEVEL $d B$) is pressed. Upon completion of the measurement by the microprocessor, measurement values are supplied to the display printed circuit board.

4-36. Operation of the display printed circuit board is controlled by the microprocessor through integrated circuit 1 Cl 8 on the control printed circuit board, which provides the following functions:
a. It provides a RAM for storage of microprocessor output data to the display printed circuit board.
b. It provides a first-in, first-out RAM which accepts and stores input information (up to 8 key commands) from the display printed circuit board.
c. It provides scan signals for both the LED display and the keyboard.
437. The LED display consists of four 7 -segment displays, which provide a display capacity of four digits with decimal points, and a fifth display which is capable of displaying a minus sign. Each display consists of individual anodes for each segment that makes up the display and the decimal point, and a common cathode. The character that appears on the display is determined by the activated anodes at the time that the common cathode is scanned. The individual displays and the associated annunciators are scanned in sequence. The
display duty cycle is 12.5%; that is, each digit or annunciator of the instrument is on 12.5% of the time.
438. Digital information for the LED display and annunciators is developed by the microprocessor, and is stored in the output RAM contained in integrated circuit IC18 on the control printed circuit board. Digital information that defines display and annunciator row selection is supplied to 8 -channel demultiplexer IC2. The output lines of demultiplexer 1C2 are activated in sequence, based on the input digital codes. The signal on the active output line of demultiplexer IC2 is applied through resistive network IC5 to display driver IC7, and the display driver supplies driving power for the corresponding display and the corresponding row of annunciators. At the same time, digital data that define the display segments and the annunciators that art to be activated are supplied to decoder IC1. The binarycoded input is decoded by decode IC1, and the output lines of the decoder are activated in accordance with this decode. The outputs of the decoder activate the individual anodes of the selected display and the individual annunciators in the active annunciator row, thereby providing the appropriate instrument display. A decimal point signal is applied through transistor QI , when appropriate, to cause a decimal point to be displayed to the right of the character on the active dispiay.
439. Demultiplexer 1 C 2 also provides scanning signals to the keyboard. As each of its first five output lines is activated in sequence, a scan signal is applied to an individual row of the keyboard through an inverter. If any key in the row being scanned is pressed, a signal is supplied to one of the column output lines to the RAM in integrated circuit IC19 on the control printed circuit board, and the key command is stored by the RAM. Key selection is defined by a combination of the row scan signal and the column output line. The RAM can store up to a maximum of eight key commands, and it delivers this stored information to the microprocessor when it is read. Actuation of more than eight key commands without a read causes the RAM to be cleared.
440. Analog DC voltage, which is proportional to the measured power level, is supplied from the control printed circuit board to drive the front panel meter to provide a relative indication of measured power for peaking and nulling applications. This also supplies a DC analog voitage to rear-panel connector PI. This signal can be used to drive an external recorder.

4-41. DETAILED THEORY OF OPERATION, POWER REFERENCE P.C. BOARD.

(See Figure 4-6.)

4-42. The circuits on the calibrator printed circuit board are used to develop a 1 mW reference power level with a 50 -ohm source resistance. This reference level can be used for automatic calibration of the instrument.

4-43. The reference signal is generated by transistor oscillator Q1, which operates at a frequency of approximately 50 MHz . An automatic leveling circuit is used to maintain a constant reference power level. Leveling is achieved by rectifying the oscillator output signal in the signal level detector circuit, and comparing the resulting DC voltage with a stable DC voltage developed by voltage reference ICI. The difference voltage is amplified by operational amplifier Al, and the output levelfrom the operational amplifier controls a varactor in a capacitive divider that determines the drive to the oscillator. The output of the operational amplifier adjusts the varactor effective capacitance as required to adjust the drive to the oscillator in the direction and amount required to maintain a constant output level. A second capacitive divider at the output of the oscillator divides the oscillator output signal and tends to provide some isolation from the load. Because the source impedance of this divider is low, a 50 -ohm series resistor is used to establish the desired 50 -ohm source resistance. The output reference power level signal is available at the front-panel POWER REF connector.

4-44. DETAILED THEORY OF OPERATION, POWER SUPPLY P.C. BOARD.

(See Figure 4-7.)
4-45. The power supply printed circuit board performs the following functions:
a. Converts $100,120,220$, or 240 volt 50 to 400 Hz , ac line power to $-5,+5,+5.2,+15$, and -15 volts de for system operation.
b. Generates a power-up signal for the microprocessor when supply voltages reach the proper values for system operation.
c. Activates an interrupt signal to the microprocessor when supply voltages drop to levels too low for reliable operation.

4-46. Input ac line power is supplied to the primary of power transformer Tl on the main chassis through fuse Fl, line switch S1, and a line voltage selector switch.

4-47. Power transformer Tl steps down the ac line voltage to two secondary windings. These voltages are rectified by bridge rectifiers CR1 and CR2. The de voltage supplied by CR 1 is filtered by Cl and C 2 and drives regulators IC2 and IC 3 which develop +15 and -15 volts, respectively. The regulated -15 volt supply also drives regulator IC5 to develop the -5 volt supply.

4-48. The dc voltage developed from CR2 is filtered by C3 and drives regulator IC4 to produce +5.2 volts. R5 provides adjustment for the +5.2 volt supply.

4-49. The unregulated +15 volt supply also drives regulator ICl to produce +5 volts to power A1, IC6, and generate a voltage reference at the junction of R7 and R8.

4-50. The output voltage of the +5.2 -volt regulated DC supply is monitored by comparator Ala to develop a power-up signal on turn-on and an interrupt signal under undervoltage or power-down conditions. When the instrument is turned on, comparator Ala develops a positive output pulse when the output of the +5.2 -volt regulated supply rises to a value approximately 150 mV below the nominal output voitage; the exact power-up signal point is adjustable by means of potentiometer RII. The positive output pulse of comparator Ala clocks flipflop IC6 to deactivate signal RESET to the microprocessor on the control printed circuit board. If the output voltage of the +5.2 -volt regulated supply should drop below the reliable usable level during operation of the instrument and during instrument shut-down comparator A la switches its output level to a logic low, thereby activating signal $\overline{\mathrm{NMI}}$ to the microprocessor. The microprocessor activates signal $\overline{\mathrm{HALT}}$, which resets flipflop IC6, thereby latching signal $\overline{\mathrm{RESET}}$ low to ensure resetting of the microprocessor to the start of the program.

Figure 4-6 Power Reference P.C. Board. Detailed Block Diagram

SECTION V
 MAINTENANCE

5-1. INTRODUCTION

5-2. This section contains maintenance instructions for the instrument. Included are a list of required test equipment, trouble localization procedures, instrument adjustment and sensor calibration procedures. Minimum pertormance checks are included in Section III; these checks should be performed whenever there is any doubt about instrument performance.

5-3. SAFETY REQUIREMENTS.

5-4. Although this instrument has been designed in accordance with international safety standards, general safety precautions must be observed during all phases of operation, service and repair of the instrument. Failure to comply with the precautions listed in the Safery Summary at the front of this manual or with specific warnings given throughout this manual could result in serious injury or death. Service and adjustments should be performed only by qualified service personnel.

5-5. TEST EQUIPMENT REQUIRED

5-6. Table 5-1 lists test equipment required for maintenance of the instrument. Test equipment of equal capability may be substituted for any listed item except the model 5004A signature analyzer (unless it is known that the substitute signature analyzer agrees completely with the model 5004 A) and the model 2500 range calibrator.

NOTE

A Diagnostic ROM Kit, P/N 961003 is available for use in troubleshooting the Instrument. The following Two Calibration Data Cartridges are available for use with the Instrument: P/N 961008-1 (for use with the HP 9825A) and P/N 961008-2 (for use with the HP 85B). The Calibration Data Cartridge can be used for testing the GPIB, printing out the contents of nonvolatile memory, and DC and AC calibration. Instructions are included with the kit and Data Cartridges.

5-7. TROUBLESHOOTING CONCEPT.

5-8. The instrument employs both analog and digital circuitry. The digital portion uses a microprocessor in a bus-oriented system. DC and AC measuring instrument such as voltmeters and oscilloscopes have been the traditional test instruments for electronic instrument maintenance; however, in a microprocessor-based busoriented system, such test equipment, while still useful
and necessary, leaves much to be desired. With such test equipment alone, troubleshooting in a bus-oriented system is extremely tedious and time-consuming, if not impossible. A new technique called signature analysis has been devised to deal with microprocessor-based systems, and the troubleshooting procedures in this manual are based on signature analysis techniques.

5-9. SIGNATURE ANALYSIS.

5-10. A complete discussion of signature analysis is beyond the scope of this manual; however, a brief discussion will aid in maintenance of the instrument. Long, complex data streams are present in microprocessor bus-oriented systems. In signature analysis, with the system operating at normal speed, these data streams are compressed into concise, easy to interpret readouts (signatures) measured at pertinent nodes. By choosing or generating appropriate measuring periods or windows, these signatures become unique; one and only one signature occurs at each node if operation is normal. Using signature analysis, it is possible to proceed through the instrument in an orderly fashion until a faulty signature is obtained. Generally, at this point, it is possible to identify one component as the most probable cause of the malfunction.

TABLE 5-1. TEST EQUIPMENT LIST

Nomenclature	Model No.
Digital Multimeter	Data Precision 1450
Oscilloscope	Hewlett-Packard 1740A
Power Meter Calibrator	Boonton Electronics 25A
Signature Analyzer	Hewlett-Packard 5004A
Calibration Data	Boonton Electronics
Cartridges	
For use with: HP 9825A	P/N 961008-1
HP 85B	P/N 961008-2
Diagnostic ROM Kit	P/N 961003
Range Calibrator	Boonton Electronics 2500
Milliwatt Test Set	W \& G EMP-1
VOM	Simpson 260 or equivalent
General Purpose Amplifier $10 \mathrm{~dB}^{*}$	Mini-Circuits ZHL-3A (N Connectors)
Amplinier $10 \mathrm{~dB}^{*}$ *Requires 24 VDC (41. 6 A Pwr Supply	(N Connectors)
50 onm Altenuator	Midwest Microwave \#389 or Weinschel Mod 2
Attenuator	HP Model 355C or equivalent

5-11. Signature analysis checks are of two basic types: "free-running" and "stimulated" or programmed. In freerunning checks, the data bus between the microprocessor and the system is opened, and an instruction that will cause the microprocessor to free-run is forced. The microprocessor then runs through its address field repeatedly. Free-running checks may be used to check the following:
a. Microprocessor address output
b. Memory select decoding
c. 1/O select decoding
d. ROM program

5-12. In the stimulated mode, the data bus between the microprocessor and system bus is left intact, and programs provided in a special ROM are invoked to conduct the desired tests. In this instrument, the stimulated mode is used to check the following:
a. RA.M operation
b. Display functions and scanning
c. Keyboard
d. $1 / \mathrm{O}$ ports

5-13. In this instrument, programmed signature analysis tests are activated by setting a bit switch, located at the rear of the control board, to the number associated with the particular test. In using signature analysis, the freerunning tests should be performed first to ascertain that the microprocessor is putting out a normal address field, that the memory and I/O decoding is correct, and that the ROM contents are normal.
5-14. The signature analysis technique is applicable only to the digital section of the instrument. Some sections of the instrument employ both analog and digital circuits. The input module, for example, receives a DC analog signal and amplifies the analog signal before converting it to a digital signal. The power supply uses both digital and anaiog circuitry to develop the voltages necessary for instrument operation. The discussion of these hybrid sections in Section IV of this manual will be helpful in maintenance and servicing.

5-15. TROUBLE LOCALIZATION.

5-16. Gaining Access To Internal Components. To gain access to intermal components of the instrument, remove the top and botom covers by removing the securing screws at the rear of each cover and then sliding the cover to the rear. Figure 5-1 shows the location of all major assemblies. To gain access to these assemblies, proceed as follows:
a. Input Module. To gain access to the input module, remove four screws (on in each corner) and lift off the cover.
b. Display Module. To gain access to the display noxdule, remove the top and bottom covers, remove the four
screws that secure the front top and bottom trim strips, and remove the top and bottom trim strips and front panels.
c. Power Reference. The power reference is secured to the front subpanel with two screws entering from the rear. To gain access to the power reference, follow the same procedure as for the display module.

5-17. Visual Inspection. With the instrument covers removed, inspect all assemblies for foreign material, unseated integrated circuits, transistors or connectors, for broken leads. scorched components, loose screws, and other evidence of electrical or mechanical malfunction.

5-18. Use of Block Diagrams. By studying the detailed theory of operation in Section IV together with the associated block diagrams, it may be possible to isolate the cause of an instrument malfunction to a particular block.

5-19. Systematic Troubleshooting. If visual inspection and block diagram analysis do not localize the source of a malfunction, proceed with module troubleshooting as follows:
a. Power Supply. With normal input power applied to the instrument, check the power supply output voltages at each module power connector. Correct power supply voltages are shown on the applicable schematic diagrams. If an abnormal voltage is encountered, disconnect the module connector from the module and note whether the power supply output voltage becomes normal; if it does, the problem probably is not in the power supply. If, on the other hand, the abnormal voltage condition remains, work backward through the power supply circuits, comparing voltages with those shown in Figure 7-7. By analyzing abnormai indications, it should be possible to localize the problem to one component in the power supply.
b. Input Module. With a 2.51 mW signal applied to the power sensor, compare waveforms and voitages with those shown in Figure 5-2. Correct indications will essentially eliminate the input module as the source of an instrument malfunction; however, incorrect indications will not necessarily localize the problem to the input module because the input module depends on proper operation of the control module for such functions as ranging, analog-to-digital conversion, and recorder and meter output. If incorrect indications are obtained, localization of the problem using the oscilloscope and digital multimeter may be a long and tedious process; a simpler approach may be to proceed with signature analysis.
c. Display Module. Proper operation of the display module is generally self-evident. Incorrect operation does not necessarily mean that the problem is in the display module; the control module may be malfunctioning. The simplest and quickest way to check the display module is
to perform the visual and signature analysis checks specified in paragraph 5-22.
d. Control Module. If normal indications are obtained in checking the power supply, input, and display modules, the problem must be in the control module; however, it is very unlikely that this situation will occur because it is virtually impossible for the input and display modules to operate properly if the control module is malfunctioning. Signature analysis is the best way to localize a problem in the control module.

5-20. SIGNATURE ANALYSIS FREE-RUNNING TEST PROCEDURES.

5-21. To make free-running signature analysis tests, proceed as follows:

CAUTION

Make sure that power is off before attempting to perform steps a, b, and f of the following procedure. Failure to observe this caution may result in the loss or destruction of data stored in the non-volatile RAM.

NOTE

Prior to any signature analysis checks, note and record bit switch (Figures 5-1 and 5-3) settings. Restore these switch settings upon completion of the signature analysis tests.
a. With power off, remove the data bus connector PI on the control board from socket J1 adjacent to J2, and remove the data bus connector Pl on the control board from socket JI adjacent to IC2 and disconnect jumper from connect or J5. (See Figure 7-5.) Do not remove any of the control board PROMs.
b. Detailed information for each of the free-running tests is provided in Tables 5-2 through 5-7. For each check, set the signature analyzer controls and make signature analyzer connections as specified in the applicable table.

NOTE

For instruments containing PROMs with codes differing from those referred to in the various signature analysis tables contact the Boonton Service Department for correct signatures.
c. After setting and connecting the signature analyzer, apply power to the instrument, touch the signature analyzer probe to the specified measurement points, and compare the signature obtained on the signature analyzer with that specified in the table. An incorrect signature is evidence of malfunction.
d. If an incorrect signature is noted, try replacing the integrated circuit(s) most intimately associated with the point at which the incorrect signature was obtained. For example: an incorrect signature in the add ress field would point to integrated circuit IC3 on the control board, but the problem could be caused by any other integrated circuit or component tied to that address line.
e. A signature of 0000 is obtained with the signature analyzer probe connected to common (ground). Some other items which will produce this signature are:

1. A node stuck at zero
2. A node at the signature analyzer clock frequency.
f. A signature of 755 U is obtained with the signature analyzer probe connected to +5 volts. Some other items that will produce this signature are:
3. A node stuck at logic I
4. Any signal with a specific relationship to the clock signal; if the clock signal is signal $\overline{\mathrm{RD}}$ from the microprocessor, signals $\overline{\mathrm{ORQ}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{RFSH}}$ are examples of signals that will produce this signature.
g. Upon completion of the free-running checks, turn power off. Then, reinstall data bus connector Pl in socket JI on the control board and reinstall jumper at connector J5.

NOTE

If programmed tests are to be performed, leave jumper disconnected from connector J 5 .

5-22. SIGNATURE ANALYSIS PROGRAMMED TEST PROCEDURES.

NOTE

Perform the free-running signature analysis tests before proceeding with programmed tests.
5-23. Use the following general procedure for cach of the specified programmed signature analysis tests:

NOTE

A Boonton Electronics diagnostic PROM is required for the programmed signature analysis tests. The diagnostic PROM is part of the 961004 Test Kit.
a. Turn off input power to the instrument.
b. Remove ROM IC6 and IC7 from its socket on the control board, and remove ROM, IC6 and IC7 from its socket on the interface board (if option -(0) is installed), (See Figure 7-5 and A-2).
c. Install the dagnostic PROM in plate of ROM ICo observing pin I orientation.

Section V
Maintenance

Figure 5-1 Location of Major Assemblies (Sheet 1 of 2)

Section V Maintenance

Figure 5-1 Location of Major Assemblies (Sheet 2 of 2)

MODE SET

CHANNEL SELECT SET

SENSOR SELECT SET

ENABLES/DISABLES USE OF BIT SWITCH WITH IEEE-4888 BUS. CLOSED FOR NORMAL OPERATION

Switch Setting Comment								
8	7	6	5	4	3	2	1	
A	N							
L	-					C	C	Operate Mode
A	U					C	0	Calibrate Mode 1 (DC Cal.)
S	S					0	C	Calibrate Mode 2 (AC Cal.)
C	$\stackrel{\text { E }}{\text { D }}$				C			One Channel Operation
$\stackrel{L}{\text { L }}$					O			Two Channel Operation
S		C	C	C				One Sensor Capability
D		C	C	0				Two Sensor Capability
		C	0	C				Three Sensor Capability
		C	0	0				Four Sensor Capability
		\bigcirc	C	C				Five Sensor Capability
		\bigcirc	C	0				Six Sensor Capability
		\bigcirc	O	C				Seven Sensor Capability
		\bigcirc	0	0				Eight Sensor Capability
0		0	0	0	AS	0	0	Sealed System Operation

Figure 5-3 Control Board Bit Switch Settings

TABLE 5-2. CONTROL BOARD ADDRESS FIELD TEST*

*This test checks the output of the proper address field by CPU IC3; however, any item connected to an address line could be responsibie for an incorrect signature on that line.
** $\mathrm{O}=$ open
TABLE 5-3. CONTROL BOARD MEMORY DECODING TEST*

*This test checks decoding for selection of memory integrated circuits.
** $\mathrm{O}=$ open

TABLE 5-4. CONTROL BOARD I/O DECODING TEST*

Signature A nalyzer			Bit Switch**						Item	Measurement Point	Signature
Function	Switch	Connection									
	Setting	Point	1	2	34	56	7	8			
$\begin{aligned} & \text { START } \\ & \text { STOP } \\ & \text { CLK } \end{aligned}$	ᄃ	TP!									
	$\underline{2}$	TP1									
		TP5									
					Any s	etting				Common	0000
										+5V	755 U
									$\overline{\text { CS0 }}$	IC14, pin 1	17 UH
									$\overline{\text { CSI }}$	1C14, pin 2	7375
									$\overline{\mathrm{CS} 2}$	1C14, pin 3	253H
									CS3	1C14, pin 4	8059
									CS4	IC14, pin 5	PaOU

*This test checks decoding for selection of I/O integrated circuits.
** $\mathrm{O}=$ open
TABLE 5-5. CONTROL BOARD ROM 0 TEST*

*This test checks the progran content of ROM 0, for softiware code 314BC.
TABLE 5-6. CONTROL BOARD ROM 1 TEST*

Signature Analyzer			Bit Switch						Item	Measurement Point	Signature
Function	Switch	Connection									
	Setting	Point	1	2	34	56	7	8			
START	L	TPI9									
$\begin{aligned} & \text { STOP } \\ & \text { CLK } \end{aligned}$	5	TP19									
	-	TP5			Any	Setting				Common	0000
					Ans					+5V	826P
									D0	IC7, pin 9	A39U
									D1	1C7, pin 10	SU29
									D2	1C7, pin 11	112P
									D3	1C7, pin 13	FUU2
									D4	1C7. pin 14	9A15
									D5	1C7. pin 15	API2
									D6	IC7. pin 16	916P
									D7	1C7. pin 17	1967

Fhis test chech, the program content of ROM 1 , for whtwate code $365 B C$.

TABLE 5-7. INTERFACE BOARD ROM 2 TEST*

Signature Analyzer			Bit Switch							Item	Measurement Point**	Signature
Function	Switch	Connection										
	Setting	Point	1	2	34	5	6	7	8			
START STOP CLK	L	TP18										
		TP18										
	」	TPS										
					Any s	ettin					$+5 \mathrm{~V}$	$826 \mathrm{P}$
										D0	1C1. pin 9	504F
										D1	1C1. pin 10	A820
										D2	1C1. pin 11	P036
										D3	IC1. pin 13	90H3
										D4	1C1. pin 14	PCIA
										D5	IC1. pin 15	20AC
										D6	1C1. pin 16	PF5C
										D7	1C1. pin 17	721H

*Thintel chech the program content of ROM 2, for woftware code 322BC.
**Sienature analyzer connection points are on conerol board; measurement points are on interface board.
d. Check to nec that data bus connector Pl on the control buard is installed in moket JI, and that jumper P5 on the control beard is connected to connector 55.
e. Turn on input power to the instrument.
f. Perform the specific test procedures provided in Tables 5-7 through 5-22. For each of the programmed signature analysis tests, make signature analyzer connections and switch settings as listed in the appropriate table. Then, set the bit switch on the control board as specified.
Connect the signature analyzer probe to the specified measurement points, and compare the signatures obtained on the signature analyzer with those listed in the table.
g. Note that in each signature analysis test the signature analyzer probe is first checked on common (ground) and then on +5 volts. If the specified signatures are not obtained for these checks, do not proceed further; subsequent signatures cannot possibly be correct. Recheck all signature analyzer connections and switch settings.
h. Both visual and signature analysis tests are provided for the display and keyboard of the inst rument. The visual check should be made first because it is fast and simple; if the visual check is satisfactory, the signature analysis test may be omitted.
i. If an incorrect signature is obtained at any point, replace the integrated circuit (or other active device) most intimately associated with the node at which the incorrect signature is obtained. All integrated circuits and transistors in the instrument are socket-mounted for easy removal and replacement. If the signature is still incorrect after all active devices have been checked, all passive devices connected to that node should be suspect.
j. Upon completion of all tests, disconnect all power to the instrument. Replace ROM U1 on the interface board the -01A option is installed, or replace the -OIB board, if installed. Remove the diagnostic PROM from the control board and replace ROM IC6 and IC7.
k. Restore the bit switch (Figure 5-4) to the settings recorded at the start of signature analysis tests.

5-24. NON-VOLATILE RAM CIRCUIT TESTS.

5-25. Non-Volatile RAM Test. To test non-volatile RAMIC8, proceed as follows:

This test will destroy and overwrite instrument data stored in the non-volatile RAM, necessitating reloading of data. This test should be made as a last resort only, or if it has been determined that stored instrument data has already been lost or is faulty.

NOTE

Leave the Boonton Electronics diagnostic ROM installed on the control board as for the programmed signature analysis tests. Make sure that jumper P 5 on the control board is connected to connector J 5 .
a. With power applied to the instrument, set all eight segments of the bit switch on the control board to the open position.
b. Observe the instrument LED display. The LED display should provide an error indication ecce initially.

TABLE 5-8 CONTROL BOARD 4ABIO TEST*

Signature Analyzer			Bit Switch**								Item	Measurement Point	Signature
Function	Switch Setting	Connection Point								8			
START STOP CLK	5	TP6											
		TP6											
	\checkmark	TP5	C	C	C	C	C	C	C	C		Common	0000
												+5V	0000
											PB0	J3, pin 1	0000
											PBI	J3, pin 2	0000
											PB2	J3, pin 3	0000
											PB3	J3, pin 4	0000
											PB4	J3, pin 5	0000
											PB5	J3, pin 6	0000
											PB6	J3. $\operatorname{pin} 7$	0000
											PB7	J3, pin 8	0000
			0	C	C	C	C	C	C	C	PB0	J3, pin 1	4F7C
			C	O	C	C	C	C	C	C	PBI	J3, pin 2	4F7C
			C	C	O	C	C	C	C	C	PB2	J3, pin 3	4F7C
			C	C	C	O	C	C	C	C	PB3	J3, pin 4	4F7C
			C	C	C	C	O	C	C	C	PB4	J3, pin 5	4F7C
			C	C	C	C	C	O	C	C	PB5	J3, pin 6	4F7C
			C	C	C	C	C	C	O	C	PB6	J3, pin 7	4F7C
			C	C	C	C	C	C	C	0	PB7	J3, pin 8	4F7C

*This test checks operation of ports A and B of the control module I / O port; the function of the bit switch is checked collaterally.
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed
TABLE 5-9 CONTROL BOARD 4CIO TEST*

	ature A		Bit Switch**								Measurement Point	Signature
Function	Switch Setting	Connection Point								Item		
START	Γ	TP6										
STOP		TP6										
CLK		TP5									Common	0000
											+5V	7C88
			0	C	C		C	C	0	PC0	1C16, pin 14	5437
										PCI	IC16. pin 15	CCA9
										PC2	1C16. pin 16	1788
										PC3	IC16. pin 17	7C88

*This test checks the operation of part of port C of the control board $1 / \mathrm{O}$ port.
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed
TABLE 5-10 CONTROL BOARD 4DIO TEST*

Signature Analyzer			Bit Switch**							Item	$\begin{gathered} \text { Measurement } \\ \text { Point } \\ \hline \end{gathered}$	Signature
Function	Switch	Connection										
	Setting	Point	1	2	4	5	6	7	8			
START	5	TP6										
STOP		TP6										
CLK		TP5									Common	0000
											+5V	58 UA
			C	0	C	C	C	C	0	PC4	IC16, pin 13	0000 (1)
										PC4	1C16, pin 13	C35P(2)

*This test checks the operation of part of port C on the control board $1 / \mathrm{O}$ port.
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed
(1) Line voltage $=120$ volts
(2) Line voltage $=90$ volts

TABLE 5-11 DISPLAY VISUAL TEST

NOTE: If this visual check produces satisfactory results, there is no need to perform the associated signature analysis check.

* $\mathrm{O}=$ open; $\mathrm{C}=$ closed

TABLE 5-12 CONTROL BOARD DISPLAY TEST*

Signature A nalyzer			Bit Switch**						Item	Measurement Point	Signature
Function	Switch	Connection									
	Setting	Point	1	2	4	56	7	8			
START	[TP6									
STOP		TP6									
CLK		TP5									
										Common	0000
										+5V	F72F
				0	0	0 C	C	0	D0	1C3. pin 14	94F8
									DI	1C3, pin 15	PH9U
									D2	1C3. pin 12	83FF
									D3	IC3. pin 8	4A1H
									D4	IC3. pin 7	H1P5
									D5	IC3, pin 9	F3A7
									D6	IC3. pin 10	P85F
									D7	1C3. pin 13	5536

*This test checks output of digital information to the display. The signature analysis gate in this test is quite lengthy (approximately 8 seconds); hold the signature analyzer probe on each test point for at least one complete window, approximately 20 seconds.
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed
TABLE 5-13 CONTROL BOARD DISPLAY SCAN TEST*

Signature Analyzer			Bit Switch**								Item	Measurement Point	Signature
Function	Switch	Connection											
	Setting	Point	1	2	3	4	5	6	7	8			
$\begin{aligned} & \text { START } \\ & \text { STOP } \\ & \text { CLK } \end{aligned}$	5	TP4											
	亿	TP4											
		TP8											
												Common	0000
												+5V	000 U
			0	0	C	0	0	C	C	0	S0	1 Cl 18. pin 32	0000
											SI	IC18, pin 33	0005
											S2	1 Cl 8 , pin 34	0003
											S3	IC18, pin 35	000 U

*This test checks the control board display I/O chip for output of encoded scan data.
${ }^{* *} \mathrm{O}=$ open; $\mathrm{C}=$ closed

TABLE 5-14 KEYBOARD VISUAL TEST*

*This test is parily keyboard and partly control board because the $1 / \mathrm{O}$ chip (IC18) for the display board resides on the control board.
$* * O=$ open; $C=$ closed

TABLE 5-15 CONTROL BOARD RAM TEST*

Stgnature Analyzer													
Function	Switch	Connection	Bit Switch**									Measurement Point	Signature
	Setting	Point	1	2	3	4	5	6	7	8	Item		
START	[TP6											
STOP		TP6											
CLK		TP5											
												Common	0000
												$+5 \mathrm{~V}$	2915
			O	C	O	C	C	C	C	0	PB0	J3. pin 1	5PPA
											PBI	J3, $\operatorname{pin} 2$	77 UU
											PB2	J3. pin 3	SPPA
											PB3	J3, pin 4	77 UU
											PB4	J3, pin 5	SPPA
											PB5	J3, pin 6	77UU
											PB6	J3. pin 7	5PPA
											P87	J3. pin 8	77UU

* 「as teit write hit patterns:nto each byte of the RAM, reads each byte and outputs to the test socket at the rear of the concrof board where it is checked with the signature analyzer probe. While not complecely exhaustive, this tent will disclose most RAM failures
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed

TABLE 5-16 INPUT MODULE, CHANNEL 1 0AIO TEST*

*This test checks the operation of I/O port A of the input module; correct signatures depend on proper functioning of both the control board and the input module.
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed
***Signature analyzer connection points are on the control board; measurement points are on input module board.

TABLE 5-17 INPUT MODULE, CHANNEL 1 0BIO TEST*

*This test checks the operation of $1 / \mathrm{O}$ port B of the input module; correct signatures depend on proper functioning of both the control board and the input module.
** $\mathrm{O}=\mathrm{open} ; \mathrm{C}=$ closed
***Signature analyzer connection points are on the control board; measurement points are on input module board.

TABLE 5-18 INPUT MODULE, CHANNEL 1 0CIO TEST*

*This test checks the operation of part of $1 / O$ port C on the input module; correct signatures depend on proper operation of both the input module and the control board.
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed
***Signature analyzer connection points are on the control board; measurement points are on input module board.
TABLE 5-19 INPUT MODULE, CHANNEL 1 0DIO TEST*

Function	ature A		Bit Switch**							Item	Measurement Point	Signature
	Switch Setting	Connection										
		Point**	1	2	34	5	6	7	8			
$\begin{aligned} & \text { START } \\ & \text { STOP } \\ & \text { CLK } \end{aligned}$		TP6										
		TP6										
		TPS									Common	0000
											+5V	23 HC or 5C43
			0	C	C 0	C	C	C	0	PB0	ASJ3. pin 1	0000 (1)
										PB0	A5J3. pin 1	7H97(2)

*This test checks part of $1 / \mathrm{O}$ port C of the input module for channel 1 .
**O = open; $\mathrm{C}=$ closed
***Signature analyzer connection points and measurement points are on the control board.
(1) Signature obtained with range calibrator connected to channel 1 input, and range calibrator set to zero and $R_{S}=500 \mathrm{k}$, or with instrument sensor connected to power REF connector and POWER REF ON switch set to off.
(2) Signature obtained with range calibrator connected to channel I input, and range calibrator set to range 5 and $R_{S}=$ 500 k , or with instrument sensor connected to POWER REF connector and POWER REF ON switch set to on.

TABLE 5-20 INPUT MODULE, CHANNEL 2 1AIO TEST*

Signature Analyzer			Bit Switch**							Measurement Point		Signature
Function	Switch Setting	Connection Point***										
START	[TP6										
STOP		TP6										
CLK		TPS									Common	0000
											+5V	876 P
			0	0		C	C	C	0	Pa0	ICI. pin 4	485P
										PAI	IC1, pin 3	1 A33
										PA2	1 Cl, pin 2	F85P
										PA3	1C1, pin 1	5H7U
										PA4	IC1, pin 40	OFFI
										Pas	IC1, pin 39	F1OC
										Pa6	1C1, pin 38	9091
										PA7	1C1, pin 37	4P81

*This test checks the operation of $1 / O$ port A on input module 2. Correct signatures depend on the proper operation of both the control board and input module 2 .
**O $=$ open; $\mathrm{C}=$ closed
***Signature analyzer connection points are on the control board; measurement points are on input modute board.

TABLE 5-21 INPUT MODULE, CHANNEL 2 1BIO TEST*

Function	ature An		Bit Switch**								Item	Measurement Point	Signature
	Switch	Connection											
	Setting	Point***	1	2	3	4	5	6	7	8			
START STOP CLK		TP6											
		TP6											
]	TP5											
												Common	0000
												+5V	876P
			C	C	0	0	C	C	C	0	P B_{0}	IC1, pin 18	485P
											PBI	ICl, pin 19	1 A33
											PB2	1 Cl, pin 20	F85P
											PB3	ICl, pin 21	5H7U
											PB4	ICI, pin 22	OFFI
											PB5	1 Cl , pin 23	F1OC
											PB6	ICl, pin 24	9091
											PB7	ICI, pin 25	4P81

*This test checks the operation of $1 / \mathrm{O}$ port B of input module 2 . Correct signatures depend on proper operation of both the control board and input module 2.
**O = open; $\mathrm{C}=$ closed
***Signature analyzer connection points are on the control board; measurement points are on input module board.

TABLE 5-22 INPUT MODULE, CHANNEL 2 1CIO TEST*

Signature Analyzer			Bit Switch**							Item	Measurement Point	Signature
Function	Switch	Connection										
	Setting	Point***	1	2	3	45	6	7	8			
START STOP CLK	「	TP6										
	\underline{L}	TP6										
	5	TP5										
											Common	0000
											+5V	5064
			0	C	0	O C	C	C	0	PC0	ICI, pin 14	6 UOI
										PCl	IC1, pin 15	6710
										PC2	IC1, pin 16	CFH2
										PC3	IC1, pin 17	121H

*This test checks the operation of part of I / O port C of input module 2 . Correct signatures depend upon proper operation of both the control board and input module 2.
**O = open; C = closed
***Signature analyzer connection points are on the control board; measurement points are on input module board.

TABLE 5-23 INPUT MODULE, CHANNEL 2 1DIO TEST*

Function	ature A Switch Setting	er Connection Point***	1	2	Bit 3	Sw 4	5	**	7	8	Item	Measurement Point	Signature
START STOP CLK	$=$	TP6 TP6 TP5											
												Common	0000
												+5V	P951(1) or 1088
			C	0	0	0	C	C	C	0	PB0	A5J3, pin !	0000 (1)
											P B0	A5J3, pin !	7H97(2)

*This test checks part of $1 / O$ port C of the channel 2 input module.
** $\mathrm{O}=$ open; $\mathrm{C}=$ closed
***Signature analyzer connection points and measurement points are on the control board.
(1) Signature obtained with range calibrator connected to the channel 2 input, and range calibrator set to zero and Rs $=500 \mathrm{k} \Omega$, or withinstrument channel 2 sensor connected to POWER REF connector and POWER REF ON switch set to off.
(2) Signature obtained with range calibrator connected to the channel 2 input, and range calibrator set to range 5 and Rs $=500 \mathrm{k} \Omega$, or with instrument channel 2 sensor connected to POWER REF connector and POWER REF ON switch set to on.
c. Turn the input power off, then back on. If the nonvolatile RAM is operating properly, the instrument LED display will show 1111 .
d. Repeat step c several times. The LED display should always show 1111 , not the error indication.
e. Upon completion of this test, turn off input power to the instrument, remove the diagnostic ROM from the control board, and install integrated circuits IC5 and IC6 in their sockets on the control board, making certain that the correct pin 1 orientation is observed.

5-26. Non-Volatile RAM Cell Test. To test the nonvolatile RAM cell, proceed as follows:

The following test procedure must be adhered to strictly: otherwise, instrument datastored in the nonvolatile RAM will be lost. Do not attempt to take measurements other than those specilied. Take all necessary precautions to ensure that no terminals are shorted to a nother terminal or to common (ground).

NOTE

The load imposed on the cell by the non-volatile RAM is 5.25 microamperes or less. With this load, the cell has a rated life of at least 100,000 hours, which is greater than 10 vears.
a. Remove the non-volatile RAM cover to gain access to the cell terminals.
b. Connect a digital multimeter between the cell positive terminal and ground, ensuring that the cell is not shorted to ground at any time.
c. Observe the digital multimeter indication: it should be approximately 3 volts with input power to the instrument turned off. If the indication is much lower than 3 voits, replace the cell in accordance with the procedures in paragraph 4-25.

5-27. Non-Volatile RAM Cell Replacement. (See Figure $5-4$). The replacement time for the cell is expected to be 10 years from the time of manufacture. This is the shelf life of the cell. Il cell replacement is needed, restoration of all instrument calibration data will be required. To replace a defective cell, proceed as follows:

Use care to avoid shorting the leads of the replacement cell. This will cause discharge of the cell and result in reduced cell lifetime.
a. Remove the control printed circuit board from the instrumeni.
b. Remove the insulating shields from the non-volatile RAM section.
c. Disconnect the positive lead of the defective cell by cutting the lead.
d. Unsolder the defective cell using a low-wattage soldering iron, and remove excess solder from the mounting holes.
e. Install the replacement cell, observing cell polarity.
f. Solder the negative terminal of the cell first. Then, as quickly as possible, solder the positive terminal.
g. Check the non-volatile RAM current by measuring the voltage across resistor R6. This voltage should be less than 525 microvolts.
h. Measure the voltage at pin 12 of integrated circuit IC8. This voltage should be approximately 3 volts.
i. Reassemble the shields on the control printed circuit board, and install the control printed circuit board in the instrument.

5-28. INSTRUMENT ADJUSTMENTS.

5-29. General. Adjustment procedures are provided for the chopper, input, display, power supply and power reference boards. The control board requires no adjustments. For the locations of test points and adjustment controls, refer to the applicable diagrams in Section VII.

5-30. Power Supply Adjustments. With all power connectors in place, the instrument controls set for proper line operation, and with line voltage applied, make power supply adjustments as follows:
a. Connect the digital voltmeter between TP3 and common. Note the voltage indication; it should be 5.20 $\pm 0.002 \mathrm{Vdc}$. Adjust R 5 as required to obtain the specified voltage.
b. Connect the digital voltmeter between HI lead to TP2 and LO lead to TP4. Note the voltage indication: it should be $150 \mathrm{mV} \pm 10 \mathrm{mV}$. Adjust R I I for an indication of 150 mV . (The polarity of the reading will depend on how the test probes are connected to the circuit.)
c. Connect the digital voltmeter between TPI and common. The voltage should be $+15 \mathrm{Vdc} . \pm 0.6 \mathrm{Vdc}$.
d. Connect the digital voltmeter between TP5 and common. The voltage should be $-15 \mathrm{Vdc} . \pm 0.6 \mathrm{Vdc}$.
e. Connect the digital voltmeter between TP6 and common. The voltage should be $-5 \mathrm{Vdc} . \pm 0.2 \mathrm{Vdc}$.

5-31. Input Module Adjustments. To adjust the input module. proceed as follows:
a. Gaining Access to Adjustment Controls. To gain access to input module adjustment controls. remove the four screws that attach the input module cover, and remove the cover. If the instrument is equipped with two input modules (option -03), the channel 2 input module will have to be removed temporarily to provide access to the channel I input module. The removal procedure for the channel 2 input module is as follows:
I. Remove the four channel 2 input module cover attaching screws, and remove the cover.
2. Remove the channel 2 chopper by unplugging it and positioning it out of the way.
3. Disconnect the voltage supply cable.
4. Disconnect the the 40 -pin bus connector.

Figure 5-4 Non-Volatile RAM Cell Test and Connection Points
5. Remove the four screws that attach the channel 2 input module to the side frames of the instrument, and remove the channel 2 input module. Take care to ensure that no adjustments are disturbed.
6. Reverse steps 1 through 5 to install the channel 2 input module in the instrument.
b. Offset Adjustments. To perform input module offset adjustments, proceed as follows:

1. Turn on the instrument and the Model 2500 range calibrator, and allow the equipment to warm up for at least 30 minutes.
2. Connect the equipment as shown in Figure 5-5.
3. Set the instrument controls as follows:
(a) Set the control board bit switch for calibrate mode 1 . (See Figure 5-3.)
(b) Press 1 and SELECT CHNL keys on the keyboard if the channel I input module is to be adjusted; press the 2 and SELECT CHNL keys if the channel 2 input module is to be adjusted.
(c) Press the 0 and RANGE HOLD keys on the keyboard.
4. Set the range calibrator and controls to range 0 and $500 \mathrm{k} \Omega$ source resistance, and press the ZERO button.
5. Connect a digital multimeter between test point TP9 on the input module and common.
6. Connect a clip lead from test point TP8 to chassis or common.
7. Connect a clip lead from test point TP7 to chassis or comnion.
8. Observe the digital multimeter indication: it should be less than ± 15 millivolts. If the digital multimeter indication is incorrect, adjust potentiometer R45 as required to provide a digital multimeter indication of less than ± 5 millivolts.
9. Remove the clip lead from test point TP8. The digital multimeter indication should be less than ± 15 millivolts. If the digital multimeter indication is incorrect, adjust potentio meter R 36 as required to provide a digital multimeter indication of less than ± 5 millivolts.
10. Remove the clip lead from test point TP7.
11. Using the digital multimeter, measure the voltage at test point TPS. The voltage should be less than ± 100 millivolts. If the voltage is incorrect, adjust potentiometer R24 as required to provide a voltage indication of less than ± 100 millivolts.

NOTE

Potentiometer R24 is omitted in later instruments.
12. If nofurther adjustments are to be performed, set the control board bit switch back to operate mode. (See Figure 5-3.)
c. Chopper Adjustment. The preceding offset adjustments must have been completed before chopper adjustment is attempted. To perform the chopper adjustment, proceed as follows:
I. Allow the instrument to warm up for at least 30 minutes.
2. Connect the instrument and test equipment as shown in Figure 5-5.)
3. Set the instrument controls as follows:
(a) Set the control board bit switch for calibrate mode I. (See Figure 5-3.)
(b) Press the 1 and SELECT CHNL keys on the keyboard if the channel I chopper is to be adjusted; press the 2 and SELECT CHNL keys if the channe! 2 chopper is to be adjusted.
(c) Press the 0 and RANGE HOLD keys on the keyboard.
4. Set the range calibrator controls to range 0 and 500 k :2 source resistance, and press the ZERO button.
5. Using the digital multimeter, measure the voltage at test point TP9 on the input module. Adjust potentiometer R4 and potentiometer RS on the chopper board equally to obtain a reading from zero to -100 millivolts, but as close to zero as possible.

NOTE

Considerable fluctuation in the digital multimeter indications will be observed during the voltage measurements in the preceding step. The fluctuation is caused by noise, thermals, etc. Mental averaging of the indications will be required.
6. If no further adjustments are to be performed, set the control board bit switch back to operate mode. (See Figure 5-3.)
d. A/D Converter Adjustment. Conversion of voltage levels from analog to digital format is performed by the input module A/D converter, which operates in conjunction with the instrument microprocessor and appropriate software. There are two adjustments associated with the A/D converter: an upscale adjustment and a downscale adjustment. These adjustments have been made precisely during the instrument calibration process, and should seldom, if ever, require readjustment; however, if it is desired to check and readjust the A/D converter, the procedure is as follows:

NOTE

The input module offset and chopper adjustments should be completed before proceeding with the A/D converter adjustment.

Section V

Maintenance

1. Connect the instrument and test equipment as shown in Figure $5-5$. Turn on the instrument and test equipment and allow a warmup period of at least 30 minutes.
2. Set the instrument controls as follows:
(a) Set the control board bit switch to calibrate mode l. (See Figure 5-3.)
(b) Press the 1 and SELECT CHNL keys on the keyboard if the channel 1 input module is to be adjusted; press the 2 and SELECT CHNL keys on the keyboard if the channel 2 input module is to be adjusted.
(c) Press the 0 and RANGE HOLD keys on the keyboard.
3. Set the range calibrator controis to range 0 and 500 k source resistance, and press the ZERO button.
4. Zero the instrument by pressing the ZERO key on the keyboard.
5. Upon completion of the zeroing operation, press the 5 and RANGE HOLD keys on the keyboard.
6. Set the range calibrator to range 5 and release the ZERO button. The indication on the instrument LED display should be 3685 . If the indication is incorrect, adjust potentiometer R1 on the input module as required to obtain the 3685 indication on the LED display.
7. Set the range calibrator to range 2. Press 2 and RANGE HOLD keys on the instrument and record the displayed reading.
8. Set the range calibrator to range 1 and adjust $\mathrm{R} \mid 1$ for one tenth of the reading recorded on range 2 . For example, if the range 2 display was 3680 , set range 1 to display 368.

NOTE

If there is not enough range of RI or RII , center RI and RII under the condition of
paragraph 6 above and adjust R44 to obtain a display of 3.685 on range 5. Then repeat paragraphs 7 and 8 above. There is some interaction between RI and R11, so recheck adjusiments.
9. Set the control board bit switch back to OPERATE MODE. (See Figure 5-3.)

NOTE

Data has been entered into the non-volatile memory of the instrument at the factory for the instrument and for the sensor(s) ordered with the instrument. A copy of the factory-entered data is provided under the right side cover of the instrument. Field entry of data is not required unless stored data is destroyed or its accuracy becomes suspect, or if another sensor is to be used with the instrument.

5-32. DC Calibration. The front end of the instrument input module is a balanced-input DC amplifier with seven decade ranges for nominal inputs of 10 microvolts to 10 volts. The output is an unbalanced DC with a 2.5 voit full scale value for each range: this $D C$ is converted into a proportional digital value. One manual gain adjustment, potentiometer R44, adjusts the gain of all ranges by the same amount: this adjustment is factory set during instrument calibration. Individual range adjustments are accomplished through software correction or adjustment, which is also determined during instrument calibration. The software corrections are stored in the instrument non-volatile memory. A gain factor associated with the recorder DC out put is also stored in the memory. To calibrate the DC gain of the instrument, proceed as follows:
a. Connect the instrument and test equipment as shown in Figure 5-5.
b. Set the instrument controls as follows:

Figure 5-5 Test Setup for Input Module Offset. Chopper, and A/D Converter Adjustments

1. Set the control board bit switch to OPERATE MODE (see Figure 5-3.)
2. Set the range calibrator to range 0 and depress ZERO.
3. Press the I and SELECT CHNL keys if channel 1 is to be adjusted; press the 2 and SELECT CHNL keys if channel 2 is to be adjusted.
4. Press the MODE PWR key.
5. Press the 0 and CAL FACTOR dB keys.
6. Press the 0 and REF LEVEL dB keys.
7. Press the ZERO key.
8. After zeroing is completed, set the control board bit switch to CALIBRATE MODE 1 and press, in order, the $1,0,0,0$, and RANGE AUTO keys.
9. Release the range calibrator ZERO.
10. Line-by-line set the range calibrator and press the instrument keys as listed in Table 5-24.
11. Disconnect the range calibrator and set the control brurd bit switch to OPERATE MODE.

5-33. AC Calibration. Two types of data are stored in the instrument non-volatile memory for each sensor that is calibrated with the instrument: low-frequency gain corrections, and high-frequency gain corrections or calibration factors, (The calibration factors are marked on the sensor housing). The low-frequency gain corrections are of two types: a gain factor for cach range, and a gain correction for each range. Any sensor procured independently of the instrument must have its low-frequency gain data entered and stored in the non-volatile inemory. Entry of high-frequency gain corrections is not absolutely necessary because calibration factors can be read from the sensor housing and entered through the instrument keyboard while using the instrument: however, if the capability of naking automatic highfrequency gain corrections as a function of frequency is desired, high-frequency gain corrections must also be entered and stored in the instrument non-volatile memory. To calibrate the low-freguency gain of the instrument, proceed as follows:

NOTE

For 4200-5B and $4200-5 E$ series sensors, increase all the levels indicated below by +10 dBm . For $+200-6$ series sensors, increase all levels by +20 dBm . Refer to paragraph $5-+1$ for procedure to obtain levels sufficient to calibrate the highest range when using a $4200-6$ sensor. Refer to paragraph 5-40 for calibrating a $4200-4 \mathrm{C}$ sensor.
a. Conneet the instrument and test equipment as shown in Figure 5-6.

NOTE

To calibrate with $+200-5 \mathrm{G}, 4200-7 \mathrm{E}$ or 4200 8 E sensors, the Model 25A must be replaced with an equivalent 50 MHz source.
b. Depress the Model 25A ZERO or 50 MHz source.
c. Set the control board bit switch to OPERATE MODE.
d. Press in order, the 1, SELECT CHNL, sensor number of 1 through 8 , as appropriate (See Section 5-39 for additional sensors), SELECT SENS, 0, CAL FACTOR $\mathrm{dB}, 0$, and REF LEVEL dB keys.
e. Set the control board bit switch to CALIBRATE MODE 1.
f. If culibrating a $+2(0)-4, B, C, E$ series sensor, press, in order, the 0, CAL FACTOR GHz, 1, 0, 0, 0, and CAL FACTOR dB heys.

If calibrating a $+2(0)-6 E$ series sensor, press, in order, the 2, CAL FACTOR GH7, $1,0,0,0$, and CAL FACTOR dB keys.

If calibrating a $+2(0)-7 E$ sensor, press, in order, the $1,3,1$, CAL FACTOR GHz, $3,8,5,0$, and CAL FACTOR dB heys.

If calibrating a $+2(0)-8 \mathrm{E}$ sensor, press, in order, the $1,3,2$, CAL FACTOR GHz, $3,8,5,0$, and CAL FACTOR dB kevs.

TABLE 5-24. DC CALIBRATION TEST

Range Calibrator	Press	Allow settling	Press	Record Display
Range 0	0, RANGE HOLD,			
3,6,.,8,5,MODE dB	-	CAL, REF LEVEL dB	≈ 1000	
Range 1	1, RANGE HOLD	-	CAL, REF LEVEL dB	≈ 1000
Range 2	2, RANGE HOLD	-	CAL, REF LEVEL dB	≈ 1000
Range 3	3, RANGE HOLD	-	CAL, REF LEVEL dB	≈ 1000
Range 4	4, RANGE HOLD	-	CAL, REF LEVEL dB	≈ 1000
Range 5	5, RANGE HOLD	-	CAL, REF LEVEL dB	≈ 1000
Range 6A*	6, RANGE HOLD	-	CAL, REF LEVEL dB	≈ 1000

*S/N 975 and above if B() series software is used, set Range to 6 B . SN 1186 and above set to range 6B.

If calibrating a 4200-5B, E series sensor, press, in order, the 1 , CAL FACTOR GHz, $1,0,0,0$, and CAL FACTOR dB keys.
If calibrating a $4200-5 \mathrm{G}$ series sensor, press, in order, 6, 5, CAL FACTOR $\mathrm{GHz}, 1,0,0,0$, and CAL FACTOR dB keys.
g. Enter the last four digits of the sensor serial number by pressing the appropriate keys followed by the dB L.IMITS $\mathrm{HI}, 1,0,0,0$, and RANGE AUTO keys.

NOTE

Pressing N and then HOLD selects range N.
h. Set the control board bit switch to CALIBRATE MODE 2 for subsequent operations.
i. Zero the 4200 by pressing 0, HOLD, ZERO. Wait for the completion of the zeroing process (digit display indicates cece then returns to numeric display).
j. To adjust the full scale gain, set the Model 25A or 50 MHz source and $\mathrm{t}_{2}(0)$ as listed in Table 5-25.
k. Set 25 A or $50 . \mathrm{MHz}$ source for no output. Set the control board bit switch to OPERATE MODE and press RANGE AUTO, ZERO.

1. To calculate the down scale corrections, set the Model 25A or 50 MH . source and $+2(0)$ as listed in Table 5-26.

NOTE

There is a one-to-one relationship between the counts entered for the downicale correction (X) and the correction which results.

Example \quad True reading $=1.000 \mu \mathrm{~W}$
Display reading $=1.006 \mu \mathrm{~W}$
Downscale correction $=-6$
Always use whole numbers: the idea is for display reading to equal true reading.

True reading $=10.00 \mu \mathrm{~W}$
Display reading $=9.95 \mu \mathrm{~W}$
Downscale correction $=5$
m. To enter the downscale correction, refer to Table 527 and set the bit switch to CALIBRATE MODE 2.
n. Set the bit switch to OPERATE MODE and check accuracy.
o. If after checking accuracy there are out-of-tolerance conditons, the quality of each range may be changed as follows:

Example

OPERATE MODE input $=-44 \mathrm{dBm}$
Display reads -44.30 dBm
The difference is 30 counts low. In dBm mode, there is a twenty-to-one relationship between the counts entered for full scale correction and the correction which results: 20 x $30=600$
Set the bit switch to CALIBRATE MODE 2 and recall gain factor by pressing HOLD, REF LEVEL dB. A gain factor of 5000 is displayed. Increase gain factor by 600 by pressing: 5,6,0,0, REF I.EVEL dB. Recheck in OPERATE MODE. If the example display was 30 counts high, a correction would hive been mide 600 eoounts lower or 4400.

5-34. Display Board Recorder Output Adjustment. To check and adjust the recorder outpur, proceed as follows:

TABLE 5-25. FULL SCALE SENSOR CALIBRATION DATA
FOR 4A, 4B, 4C, 5B*, 5E* AND 6E* SERIES SENSORS

25 A 50 MHz	Press	Allow setting	Press	Record Display
- $54 \mathrm{dBm(.398nW)}$	$\begin{aligned} & \text { 0,HOLD, } 3,9, ., 8 \\ & 0, \text { MODE dB } \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	$=5000$
$-44 \mathrm{dBm}(3.98 \mathrm{nW})$	1,HOLD, 3,9,., 8 0,MODE dB	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	≈ 5000
$-34 \mathrm{dBm}(39.8 \mathrm{nW})$	$\begin{aligned} & \text { 2,HOLD, } 3,9, ., 8 \\ & 0, \text { MODE dB } \end{aligned}$	-	CAL, 0, HI, REF LVL dB	≈ 5000
$-24 \mathrm{dBm}(3.98 \mu \mathrm{~W})$	$\begin{aligned} & \text { 3, HOLD, } 3,9, ., 8 \\ & 0, \text { MODE dB } \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	$=5000$
$-14 \mathrm{dBm}(39.8 \mu \mathrm{~W})$	4,HOLD, 3,9,., 8 $0, M O D E d B$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	≈ 5000
$0 \mathrm{dBm}(1.00 \mathrm{~mW})$	$\begin{aligned} & \text { 5, HOLD,9,9,.,9 } \\ & 9, \text { MODE dB } \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	≈ 5000
$+10 \mathrm{dBm}(10.0 \mathrm{~mW})$	$\begin{aligned} & \text { 6,HOLD,9,9,.,9 } \\ & 9, \text { MODE dB } \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVLdB	$=5000$

:All levels should be increased by 10 dB for $5 B$ and $5 E$ sensors and 20 dB for $6 E$ sensor.
FOR 5G SERIES SENSOR

50 MHz source	Press	Allow setting	Press	Record Display
$-29 \mathrm{dBm}(1.26 \mu \mathrm{~W})$	2,HOLD, $1,2, ., 6$ 0, MODE dB	-	CAL, 0, HI, REF LVL dB	≈ 5000
$-19 \mathrm{dBm}(12.6 \mu \mathrm{~W})$	$\begin{aligned} & 3, \text { HOLD }, 1,2, ., 6 \\ & 0, \mathrm{MODE} \mathrm{~dB} \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	≈ 5000
$-6 \mathrm{dBm}(.251 \mathrm{~mW})$	4,HOLD, 2,5,., I 0,MODE dB	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVLdB	≈ 5000
$+7 \mathrm{dBm}(5.01 \mathrm{~mW})$	$\begin{aligned} & \text { 5,HOLD,5,0,., } \\ & 0, \text { MODE dB } \end{aligned}$	-	CAL, $0, \mathrm{HI}$, REF LVL dB	≈ 5000
$+19 \mathrm{dBm}(79.4 \mathrm{~mW})$	$\begin{aligned} & \text { 6,HOLD }, 7,9, ., 4 \\ & 0, \mathrm{MODE} \text { dB } \\ & 0, \mathrm{HOLD}, 0, \text { REF LVL dB, } 0, \mathrm{HI} \\ & 0, \mathrm{HOLD}, 0, \text { REF LVL dB, } 0, \mathrm{HI} \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	$=5000$

FOR 7E AND 3E* SERIES SENSORS

50 MHz source	Press	Allow setting	Press	Record Display
$-20 \mathrm{dBm}(10.0 \mu \mathrm{~W})$	$\begin{aligned} & 0, \text { HOLD, } 9,9, ., 9 \\ & 9, \text { MODE dB } \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	≈ 5000
$-10 \mathrm{dBm}(100 \mu \mathrm{~W})$	I,HOLD,9,9,.,9 9,MODE dB	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	≈ 5000
$0 \mathrm{dBm}(1.00 \mathrm{~mW})$	$\begin{aligned} & \text { 2,HOLD, } 9,9, ., 9 \\ & 9, \text { MODE dB } \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	≈ 5000
$+10 \mathrm{dBm}(10.0 \mathrm{~mW})$	$\begin{aligned} & \text { 3, HOLD, } 9,9, ., 9 \\ & 9, \mathrm{MODE} \mathrm{~dB} \\ & 4, \mathrm{HOLD}, 0, \mathrm{REF} \text { LVL dB, } 0, \mathrm{HI} \\ & 5, \mathrm{HOLD}, 0, \text { REF LVL dB, } 0, \mathrm{HI} \\ & 6, \mathrm{HOLD}, 0, \text { REF LVL dB, } 0, \mathrm{HI} \end{aligned}$	-	CAL, $0, \mathrm{HI}, \mathrm{REF}$ LVL dB	$=5000$

[^0]TABLE 5-26. DOWN SCALE SENSOR CALIBRATION DATA FOR 4A, 4B, 4C, 4E, 5B*, 5E* AND 6E* SERIES SENSORS

25 A or 50 MHz	Record Display Reading	True Reading	Downscale Correction
$-60 \mathrm{dBm}(1.00 \mathrm{nW})$		1.00 nW	Range $0=$
$-50 \mathrm{dBm}(10.00 \mathrm{nW})$		10.00 nW	Range $1=$
$-40 \mathrm{dBm}(100.0 \mathrm{nW})$		100.0 nW	Range $2=$
$-30 \mathrm{dBm}(1.000 \mu \mathrm{~W})$		$1.000 \mu \mathrm{~W}$	Range $3=$
$-20 \mathrm{dBm}(10.00 \mu \mathrm{~W})$		$10.00 \mu \mathrm{~W}$	Range $4=$
$-10 \mathrm{dBm}(100.0 \mu \mathrm{~W})$		$100.0 \mu \mathrm{~W}$	Range $5=$
$+3 \mathrm{dBm}(2.00 \mathrm{~mW})$		2.00 mW	Range $6=$

*All levels should be increased by 10 dB for $5 B$ and 5 E sensors and 20 dB for 6 E sensor.
FOR 5G SERIES SENSOR

50 MHz source	Record Display Reading	True Reading	Downscale Correction
$-37 \mathrm{dBm}(.200 \mu \mathrm{~W})$		$.200 \mu \mathrm{~W}$	Range $2=$
$-26 \mathrm{dBm}(2.51 \mu \mathrm{~W})$		$2.51 \mu \mathrm{~W}$	Range $3=$
$-16 \mathrm{dBm}(25.1 \mu \mathrm{~W})$	$25.1 \mu \mathrm{~W}$	Range $4=$	
$-3 \mathrm{dBm}(.501 \mathrm{~mW})$.501 mW	Range $5=$	
$+10 \mathrm{dBm}(10.0 \mathrm{~mW})$		10.0 mW	Range $6=$

FOR 7E AND SE SERIES SENSORS

50 MHz source	Record Display Reading	True Reading	Downscale Correction
$-26 \mathrm{dBm}(2.51 \mu \mathrm{~W})$		$2.51 \mu \mathrm{~W}$	Range $0=$
$-16 \mathrm{dBm}(25.1 \mu \mathrm{~W})$		$25.1 \mu \mathrm{~W}$	Range $1=$
$-6 \mathrm{dBm}(.251 \mathrm{~mW})$.251 mW	Range $2=$	
$+4 \mathrm{dBm}(2.51 \mathrm{~mW})$	2.51 mW	Range $3=$	

TABLE 5-27. DOWNSCALE CORRECTION DATA

PRESS
0 , HOLD, $\mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{H}$ I, HOLD, X, X, X, X, H 2, HOLD, X, X, X, X, H 3, HOLD, $x, x, x, x, H I$ 4, HOLD, $X, X, X, X, H I$ 5, HOLD, $X, X, X, X, H I$ 6, HOLD, $\mathrm{X}, \mathrm{x}, \mathrm{X}, \mathrm{x}, \mathrm{HI}$

X Denotes downscale correction
a. Connect the instrument and test equipment as shown in Figure 5-6.
b. Set the instrument controls as follows:

1. Press the MODE PWR key on the keyboard.
2. Press the RANGE AUTO key on the keyboard.
3. Press the 0 and CAL FACTOR $d B$ keys on the keyboard.
4. Press the 0 and REF LEVEL $d B$ kevs on the keyboard.
c. Set the power meter calibrator output to 1 mW .
d. Check the indication on the LED display of the instrument. If the indicatoon is not 1.000 mW , press the CAL key.

* e. With 1.000 mW indicated on the LED display, check the indication on the digital multimeter: it should be 9.9810 10.00 volts. If the indication is correct, proceed directly to step h: il the indication in incorrect, proceed to step f.
* f. If the digital multimeter indication in preceding step e was incortect, set the control board bit switch to CALIBRATE MODE 1 (see Figure 5-3) and press the dB LIMITS LO key on the heyboard. The LED display will show a gein modifier of approximately 3600 . Calculate a revised gain moditier value to obtain the required correction. For example: if the digital multimeter indication were 9.96 volts. 10.4% low) and the $d B$ LIMITS LO key recalled a gain moditier of 3500 , the revised gain modifier value would be:
$1.004 \times 3500=3514$
Enter thi revised gain modifier value by pressing the following heys on the heyboard:
3, 5, 1, 4,
dB LIMITS LO,
dB LIMITS LO (revised value hould appear on the LED display
* g. Reset the control board bit switch to OPERATE MODE 0. (See Figure 5-3.) Note the indication on the digital mullmeter: it shuld be 9.98 to 10.00 volts. Repeat steps f and g, if necesary, until the correct indication is obtained.
* h. Set the power meter calibrator output to 0.125 mW , and observe the indications on the instrument LED display and on the digital multimeter. The millivolt indication on the digital multimeter should equal ten times the value shown on the LED display ± 1 count. It the digital maltimeter indicathon is incorrect, adjust potentioneter R55 on the input module board an required to provide the proper digitai multimeter indication.
i. Repeat stops e through h unnl no further adjustment are necessary

NOTE

Make sure that control board bit switch is set back to OPERATE MODE upon completion of adjustments.

5-35. Power Reference Adjustment. To check and adjust the power reference output, proceed as follows:
a. Connect a 50 -ohm test probe to a Model EPM-I milliwatt test set.
b. Turn on the milliwatt test set and the instrument. Allow the milliwatt test set and the instrument to warm up for at least 30 minutes.
c. Standardize the milliwatt test set in accordance with the manufacturer's instructions.
d. Connect the probe of the milliwatt test set to the POWER REF connector of the instrument and note the indication on the nilliwatt test set. The indication should be within $\pm 0.005 \mathrm{~dB}$.

NOTE

If the indication in step d is within the specified limits, no adjusiment of the power reference is required. Proceed with the following steps only if the indication is outside the specified limits.
e. Remove the bottom cover.
f. Remove the bottom front trim strip from the instrument by removing the two serews (one on each side) that secure the trim strip.
g. Locate the power reference adjustment. (See Figure 5-1.)
h. Adjust the power reference adjustment R 4 as required to ohtain an indication of $0 \mathrm{dBm}+0.005 \mathrm{~dB}$ on the milliwatt lest set.
i. Restandardize the milliwatt test set and recheck the power reference. Readjust the power reference adjustment as necessary.
j. Turn off the instrument and the milliwatt test set. Install the trim strips and cover.

5-36. Entry of Sensor Calibration Factors Versus Frequency. Proceed as folows:

NOTE

The 4200 is eapable of storing twenty calibration factory (0 through 19) for each semor (from 1 to 8) programmed into the instrument. Frequencies must be in accending order, starting with the lowest and
advancing in sequence to the highest. If less than twenty calibration factors are to be entered, enter the calibration factors available then fill the remaining positions with the highest frequency and associated calibration factor.
a. Using the keyboard keys, select the sensor for which calibration factors are to be entered. For example, if the calibration factors to be entered are for sensor 4, press the 4 and SELECT SENS keys.
b. To confirm correct sensor selection press the SELECT SENS key. The number of the selected sensor will appear on the instrument LED display.
c. Set the control board bit switch. to CALIBRATE MODE 2. Refer to Figure 5-3.
d. Using the keyboard keys, enter the calibration factor position number (0 through 19) followed by the RANGE AUTO key.
For example: to enter a frequency and calibration factor into position 0 , press the 0 key followed by the RANGE AUTO key.
e. Using the keyboard keys, enter the frequency to which the sensor calibration factor to be entered applies.
For example: if the sensor calibration factor to be entered applies to a frequency of 0.1 GHz , press the 0 , ., and 1 numeric key, then press the CAL FACTOR GHz key. (Frequencies of 0.1 GHz through 110 GHz are valid).
f. Using the numerical keys, enter the sensor calibration factor for the frequency selected in step e. (For negative values, press the CHS key after entering the sensor calibration factor value.) After entering the correct sensor calibration factor value, press the CAL FACTOR dB key. (Values of -3.00 to +3.00 are valid.)
g. Repeat steps d through f until all twenty positions are filled.

h. Press the 0 and RANGE AUTO keys.

i. Set the control board bit switch, to the OPERATE MODE. Refer to Figure 5-3.

5.37. SENSOR CALIBRATION

5-38. General. In order to use a sensor for which calibration data is unknown, the following requirements must be met:
a. The control board bit switch must be set to accept another sensor number without returning an error indication. Data is stored in the instrument non-volatile memory for the number of sensors procured with the instrument; if a sensor number other than any of those for which data is sored is selected, an crror message is displayed on the instrument LED display, thereby indicating an empty storage
location. The control board bit switch is set to accept this number as the number of the sensor for which new data is to be entered, and the error indication is erased automatically The maximum number of sensors for which data may be stored is eight. If data for eight sensors is already in storage and it is desired to use another sensor, the data already in storage for one of the sensors must be over written.
b. Serial number, type, and attenuation data for the new sensor must be entered into non-volatile memory. (See Sec tion 5-33)
c. Gain factors and gain corrections for the new sensor must be developed, entered, and checked. A calibration source is required for this function. (See Section 5-33)
d. Calibration factors versus frequency, which are shown on the barrel of the sensor, must be entered into non-volatile memory. (See Secton 5-36)

5-39. Bit Switch Setting For Additional Sensor. To determine the correct bit switch setting for the new sensor, proceed as follows:
a. If the number of sensors for which data is already stored is unknown, select sensors in sequence through the keyboard until an error indication (CCO2) appears on the instrument LED display. For example, press the 1 and SELECT SENS keys, the 2 and SELECT SENS keys, the 3 and SELECT SENS keys, and the 4 and SELECT SENS keys.
b. When an error indication is returned, press the SELECT SENS key a second time: if the LED display does not indicate the last selected sensor number, it can be assumed that no data has been entered in non-volatile memory for this sensor number.
c. Set the control board bit switch (Figure 5-3) to accept the sensor number that produced the error indication and mark this sensor number on the sensor barrel.

5-40. Calibration of Model $4200-4$ C Sensor. The calibration procedures for this sensor are the same as those for other sensors, except that a 50 -ohm to 75 -ohm transformer is required between the power meter calibrator and the sensor. Any loss or gain introduced by the transformer must be taken into account during the calibration procedure. For example, if a transformer with a loss of 0.05 dB at 1 MHz is used, the LED display indications must be reduced by 0.05 dB while the input levels remain the same.

NOTE

When making final calibration checks of the sensor, the transformer loss in the example
above can be compensated for by entering a calibration factor of +0.05 dB into the instrument.

5-41. Calibration Notes, Model 4200-6 Sensor +30 dBm Range.

$5-42$. The maximum output level of the Model 25A calibrator, which is recommended for instrument calibration, is +20 dBm . Because levels of +20 to +30 dBm are required for checking or calibrating the highest range of the 4200-6 sensor, an amplifier with an exact gain of 10 in power and a capability of delivering 1 watt into 50 ohms at 1 MHz is required. The procedure which follows outlines an alternate method for checking this range.
a. Calibrate and/or check the instrument with the 4200-6 sensor on all ranges except the highest (+30 dBm) range as outlined in paragraph 5-33.
b. Connect the instrument and test equipment as shown in Figure 5-7. A small fan directed at the Model ZHL-3A will minimize drift. The exact attenuation of the $10 \mathrm{~dB}, 50$ ohm attenuator must be known. If the exact attenuation is unknown, it can be determined with a reasonable degree of accuracy as follows:

1. With the Model 25 A , the instrument, and the 4200 6 sensor calibrated or checked as in paragraph a above, set the output of the Model 25A to 10 dB in and connect the equipment as shown in Figure 5-8.
2. Note the reading on the instrument display. The attenuation value of the 10 dBm attenuator is 10 dBm minus the dBm indication on the instrument display. Higher resolution may be obtained by operating the instrument in the PWR mode and calculating the attenuation value from:
Attenuation $(\mathrm{dB})=$
$\quad \log \frac{10.00 \mathrm{~mW}}{\text { Instrument indication }(\mathrm{mW}) \text { with } 10 \mathrm{~dB} \text { attenuator }}$
c. Using the test setup shown in Figure 5-7, note and record the indication on the instrument display as the Model 25 A output level is varied over the range of +10 dBm to +1 dBm . A tabular form as shown in Table 5-28 is recommended. In Table 5-28, the first column is the Model 25A output setting, and the second column lists indications typical of what might be expected. These two columns amount to a calibration of the Model 25A - Model ZHL-3A combination.
d. Remove the 10 dB attenuator from the test setup shown in Figure 5-7, and connect the 4200-6 sensor directly (o) the Model ZHL-3A. Set the Model 25A output to the levels listed in the first column of Table 5-28, and record the indications on the instrument display in the third column of the table. Ideally, the values listed in the third column will equal those listed in the second column plus the exact
attenuation value of the 10 dB attenuator. If the values listed in the third column are within ± 0.02 of the values listed in the second column plus the exact value of the 10 dB attenuator, no adjustment on this range is needed. If readjustment is desired, proceed to paragraph 5-44.

NOTE

At the higher outpur level, the output will be distorted; however, this does not matter since the same distortion exists in both determinations (second and third columns).

5-43. In the +30 dBm range adjustment procedure that foilows, it is assumed that the $4200-6$ sensor has been previously calibrated with the instrument. The adjustment value is stored in REF LEVEL dB: this value will be in the vicinity of 5000 . If the $4200-6$ sensor has not been calibrated with the instrument, 5000 should be stored initially and adjusted as necessary. Use the following procedure:
a. Set the Model 25 A output to +7 dBm .
b. Set the control board bit switch (Figure 5-3) to CALIBRATE MODE 2 (switch No. 2open).
c. Press the instrument REF LEVEL dB key. The display will indicare a number in the vicinity of 5000 .
d. If the 4200-6 sensor has not been calibrated previously, enter 5000 as the initial value by pressing the $5,0,0$, 0 , and REF LEVEL dB keys. Repeat the procedures of paragraphs 5-42c, 5-42d, and 5-43a through 5-43c.
e. Adjust the value obtained in paragraph c above in the desired direction by increasing or decreasing this value. A change of 12 counts in this value corresponds to a change of approximately 0.01 dB . For example: if the recorded indication in Table $5-28$ were 25.34 dBm rather than 25.32 dBm as required, a correction of -0.02 dB is necessary; therefore, 24 counts should be subtracted from the value obtained in paragraph c above. To enter this new value. press the N, N, N, N, and REF LEVEL dB keys.
f. After entering the adjusted value, set the control board bit switch (Figure 5-3) to the OPERATE MODE (switch No. 2 closed), and recheck the performance by returning to paragraph 5-43c.

5-44. If the difference in the last column of Table 5-23 exceeds $\pm 0.02 \mathrm{~dB}$ for the 3,4 , or 5 dB m selting of the Model 25 A , this difference may be reduced as follows:
a. Set the Model 25 A output to +4 dBm .
b. Set the control board bit switch (Figure 5-3) to

Figure 5-7. Test Setup for Determination of Attenuation Value

Figure 5-8. Calibration Test Setup, Model 4200-6 Sensor, +30 dBm Range
TABLE 5-28. TYPICAL CALIBRATION DATA FOR MODEL 4200-6 SENSOR WITH MODEL 4200

Model 25A Level	Model 4200 Indication with 10 dB Atten.	Model 4200 Indication Without 10 dB Atten.	Difference
10 dBm	20.02 dBm	30.03 dBm	+0.01 dB
9 dBm	19.02 dBm	29.04 dBm	+0.02 dB
8 dBm	18.06 dBm	28.07 dBm	+0.01 dB
7 dBm	17.09 dBm	27.09 dBm	0.00 dB
6 dBm	16.12 dBm	26.11 dBm	-0.01 dB
5 dBm	15.13 dBm	25.12 dBm	-0.01 dB
4 dBm	14.15 dBm	24.13 dBm	-0.02 dB
3 dBm	13.16 dBm	23.16 dBm	0.00 dB
2 dBm	12.18 dBm	22.18 dBm	0.00 dB
1 dBm	11.17 dBm	21.18 dBm	+0.01 dB

CALIBRATE MODE 2 (switch No. 2 open).
c. Press the dB LIMITS HI key on the instrument front panel and note the value shown on the instrument display.
d. Increase or decrease this value as required in steps of 5 or 10 counts, returning the control board bit switch to the OPERATE MODE (switch No. 2 elosed), and noting the
result. Repeat the adjustment as necessary to obtain the desired indication.
e. Recheck the entire range, starting with paragraph $5-4$ c.

1. At the conclusion of the procedure, be sure to return the control board bit switeh to the OPERATE MODE (switch No. 2 elosed).

SECTION VI

PARTS LIST

6-1. INTRODUCTION

Table 6-2. Replaceable Parts, list all the repiaceable parts and includes: the reference symbol, description, Mfr., Mfr's Part No, and the BEC Part No, Table 6-I. Manu-
facturer's Federal Supply Code Numbers, list the manufacturer's federal supply numbers.

TABLE 6-1. MANUFACTURER'S FEDERAL SUPPLY CODE NUMBERS

NUMBER	NAME	NUMBER	NAME	NUMBER	NAME
$002+1$	Fenwal Electronics	20307	Arco- Wicronics	5420	Dage - MTI
01121	Allen Bradley	24266	Guwanda Electronics	$54+26$	Buss Fuses
$012+7$	Sprague Electric Company	27014	National Semiconductor	$5+473$	Panavonic
01295	Texas Insurument,	27264	Molex, Inc.	56289	Sprague Electric Company
02660	Amphenol	27735	F-Dyne Electronics	56708	Zilog. Inc.
02735	RCA Solid State Division	27777	Varo Semiconductor	57582	Kahgan Electronics Corp.
03888	Pyrotilm (KDU	28480	Hewlett-Packard Corp.	61637	Kemet-Union Carbide
04713	Mororola Semiconductor	31313	Components Corp.	71450	CTS Curp.
(020)1	Boonton Electronics	31918	ITT Schadow. Inc.	73138	Beckman Instru. . Helipol Div.
06383	Panduit Curp.	32575	A.MP	81073	Grayhill
06776	Rubinson Nugent, Inc.	32897	Eric	91293	Johanson
0726.3	Fuirchild Semiconductor	32997	Buams. Inc.. Trimpor Div.	91.506	Augat
07326	Fairchild Semiconductor	33297	NEC	98291	Sealectro Corp.
13812	Dialco Div. of Amperex	33883	RMC	99942	Centralab
14655	Cumell-Dubilier	34335	Advanced Micro Devices	S 4217	United Chemicon. Inc.
17801	Panel Corp. (Schurter)	51640	Analog Devicer. Inc.		
19701	Mepco Electra	52.464	OKI		

TABLE 6-2. REPLACEABLE PARTS

Secrion VI
6-2. Replaceable Parts (Continued)
Parts List

0422340DE OPCODE: O REV: G* (G) PWA CONTROL
MODEL: 4200

REFERENCE DESIGMATOR	DESCRIPTION	FEO. CODE	MANUFACTURER PART NUMBER	QTY	$\begin{aligned} & \text { BEC } \\ & \text { PART NUMBER } \end{aligned}$
BTI	CELL LITHIUM 34	54473	BR2325-1 HB	1	555007000
C1	CAP MICA 430 OF 1\% 5004	14655	CDISFD431F03	1	200037000
C2	CAP MICA $1000 F 5 \% 5004$	14655	CM05FDIO1J03	1	200001000
C3	CAP TANT 15UF 10\% 20%	56289	1960156×9020KA1	1	283227000
C4-7	CAP EL I OUF 20\% 254	S4217	SM-25-VB-10-M	4	293535000
CR1-2	DIODE SIG 1N914	01295	1NS 14	2	530058000
$1 C_{1}$	IC 7404 HEX INYERTER	01295	SN7404N	1	534042000
1 C 2	RES NETUORK 4.7K 2\% 1.8W	01121	3168472	1	345020000
103	IC Z80-CPU-PS	56709	280-CPU-PS	1	534159000
1 CH	IC 74LS42 4-10 DECODER	01295	SN74LS42N	1	534210000
1 Cs	IC MSMS128-20-RS RAM $2 \mathrm{~K} \times 8$	52464	MSME128-20-RS	1	534304000
IC9	IC 4011 QUAD 2 INPUT NAND	02735	CD4011AE	1	534022000
IC13	RES NETWORK 4.7K $2 \% 1.86$	01121	3168472	1	345020000
1 Cl 4	IC 74LS42 4-10 DECODER	01295	SNT4LS42N	1	534210000
1015	IC $74 L S 32$ QUAD 2 INPUT OR	01295	SN74LS32N	1	534168000
$1 c^{16}$	IC 82S5APC PERIPH INTERFACE	34335	AM8235APC	1	534171000
1017	RES NETWORK 4.7K 2\% 1.3W	01121	3168472	1	345020000
ICIS	IE 3279-2 KEYBDJDISP INTERFACE	35297	UPD9279C-2	1	534211000
JB	CONNECTOR 2 PIN STRAIGHT	27264	22-03-2021	1	477361000
$J A$	CONNECTOR 2 PIN STRAIGHT	27264	22-03-2021	1	477361000
J1-2	SOCKET IC 16 PIN	06776	ICN-163-S3-6	2	473042000
15	CONNECTOR 2 PIN STRAIGHT	27254	22-03-2021	1	477361000
1.	INDUCTOR 15uH 10%	24226	$10 \mathrm{M152K}$	1	400373000
PB	SHUNT 2 CIRCUIT	27264	15-38-1024	1	483253000
PA	SHUNT 2 CIRCUIT	27264	15-38-1024	1	483253000
PI	SHUNT 8 CIRCUIT	32575	435704-8	1	483226000
P2	(G) CONNECTOR 5 PIN RT ANG MOD	04901	477333000	1	47733300A
P3	(G) CONNECTOR 5 PIN RT ANG MOD	04901	477332008	1	4773こ2008
P4	(G) CONNECTOR 6 PIN RT ANG MOD	04901	47533100A	1	47733100 A
$P 5$	SHUNT 2 CIRCUIT	27264	15-33-1024	1	483253000
01	TRANS NPN 2 N 3904	04713	2N3904	1	523071000
R1	RES MF 332 OHM 1\% 1/4W	19701	$5043 E 0332 R ~ O F ~$	1	341250000
R2-3	RES MF 10.0K 1\% 1/4w	19701	5043 ED $10 K 00 F$	2	341400000
R4-5	RES MF 5.11K 1\% 1/4W	19701	5043 EDSK110F	2	341568000
R6	RES MF 100 OHM $1 \% 1 / 4 \mathrm{~W}$	19701	5043 ED 100 OF	1	341200000
R7	RES MF 10.0K 1\% 1/4W	19701	S043EDIOK OF	1	341400000
R8	RES MF 5.11K 1: $1 / 4 \mathrm{~W}$	19701	$5043 E D 5 K 110 F$	1	341368000
R9-11	RES MF 4.75K 1\% 1\%4w	19701	$5043 E D 4 K 750 F$	3	341565000
51	SWITCH ROCKER SPST DIP	31073	765808	1	465225000
XICE	SOCKET IC 40 PIN	06776	16N-405-S4-TG	1	473052000
XIC5-3	SOCKET IC 24 PIN	06776	ICN-245-S4-G	3	473043000
xicio	SOCKET IC 40 PIN	05756	ICN-405-S4-TG	1	473052000
XICis	SOCKET IC 40 PIN	06776	ICN-406-S4-TG	1	473052000
xsi	SOCKET IC 16 PIN	06776	1CN-163-53-G	,	473042000

04236201B OPCODE: O REV: D- UNIQUE CONFIG PARTS 4200
MODEL: 4200

REFERENCE DESIGNATOR	DESCRIPT	ION			FED. CODE	Manufacturer PART NUMBER	QTY	$\begin{aligned} & \text { BEC } \\ & \text { PART } \end{aligned}$	NUMBER
IC6AS	15 EPROM	PROG.	3658 C	4200	04901	53436500 H	1	53436	5500 H
ICPAS	IC EPROM	PROG.	3148G	4200	04901	53431400 H	1	53431	40 OH

04235800C OPCODE: O REY: C* (G) PWA DISPLAY

042230018 OPCODE: 0 REV: $C^{*} \quad(G)$ PWA INPUT AND PWA INPUT-03 OPT

MODEL: 4200

REFEREMCE DESIGNATOR	DESCRIPTION	$\begin{aligned} & \text { FED. } \\ & \text { CODE } \end{aligned}$	MANUFACTURER PART NUMBER	Qty	BEC PART NUMBER
C27-34	CAP EL 1 OUF 20\% 25V	54217	SM-25-VB-1 $0-M$	8	283336000
C35	CAP CER 150pF 10\% 600Y	16546	CE-151	1	224314000
C36	CAP EL 1004 F 20\% 25Y	S4217	SM-25-VE-100-M	1	283334000
C3?	CAP CER 10B0pF 10\% 600Y	16546	CE-102	1	224310000
1 Cl	IC 8255APC PERIPH INTERFACE	34335	AM8255APC	1	534171000
1 c 2	IC 565 D/A CONVERTER 12 BIT	51640	ADS65AJD	1	421034070
103	IC 4053 B TRPL DECDR/DEMULTPXR	04713	MC140538CP	1	534207000
1 CS	IC 4047A MULTIVIB (RCA ONLY)	027.35	CD4047aE	1	534229000
106	IC 4051 B MULTIPLEXER RCA ONLY	02735	CD4051BE	1	534209000
1C7-8	IC 40138 DUAL FLIP FLOP	02735	CD40138E	2	534205000
1c9-10	(G) IC 40168 QUAD SWITCH	02735	CD4016EE	2	534218000
1 Cl 1	IC 4075E TRPL 2 INPUT OR	02735	CD4075BE	1	534206000
1c13-14	If 40518 MULTIPLEXER RCA DHLY	02735	C040518E	2	534209000
P2	(c) CONNECTOR 6 PIN RT GNG MOD	04901	47733100A	1	47733100a
R1	RES VAR 100 OHM 10% 0.5W	73138	T2PR100	1	311408000
R2	RES MF 2.67K $1 \% 1 / 4 \mathrm{~W}$	19701	5043ED2K670F	1	341341000
R3	RES MF 1.00K 1\% 1/4d	19701	5043ED1K000F	1	341300000
R4	RES MF 100 OHM $1 \% 1 / 4 \mathrm{~d}$	19701	$5043 E D 10020 F$	1	341200000
R5	RES MF 10.0K $1 \% 1 / 4 \mathrm{~d}$	19781	5043ED1DK00F	,	341400000
R6	RES MF 5.11K 1\% 1/4W	19701	5043EDSK110F	1	341368070
R 7	RES MF 10.0K $1 \% 1 / 4 \mathrm{~W}$	19701	5043ED10K00F	1	341400000
R8	RES MF 8.25K $1 \% 1 / 4 \mathrm{~W}$	19701	5043 EDEK250F	1	341388000
R9	RES MF 10.0K 1\% 1/4W	19701	5043EDIDKDOF	1	341400000
R10	RES COMP 3.0M 5\% 1/4W	01121	CB3 055	1	34.3646000
R11	RES YAR SOK 10\% 0.56	73138	T2PRSOK	1	311593000
R12-13	RES MF 1.00M 1\% 1/4W	14674	5043EDIM000F	2	341600000
R14	RES MF 237K 1\% 1/4W	19701	5043 ED237K OF	1	341536000
R15	RES MF 249K $1 \% 1 / 4 \mathrm{~W}$	19701	5043ED249KOF	1	341538000
R16	RES MF 12.1K $1 \% 1 / 4 \mathrm{~W}$	19701	5043ED12K10F	1	341408000
R17	RES MF 806K 1\% $1 / 4 \mathrm{~W}$	19701	5043 ED806K OF	1	341587000
R18-19	RES COMP 12M 5\% 1/4W	01121	C81265	2	343708000
R20	RES MF 1.82K 1\% 1/4W	19701	5043ED 1 K82 0F	,	341325000
R21	RES MF $20.0 \mathrm{~K} 1 \% 1 / 4 \mathrm{~W}$	19701	5043ED2DK00F	1	341429000
R22	RES MF 221K 1\% 1/4W	19701	5043ED221K0F	1	341533000
R23	RES MF 1.00M 1\% 1/4W	14674	5043ED1MODOF	1	341600000
R25	RES MF 1.00 M 1\% $1 / 4 \mathrm{~W}$	14674	5043EDIMOOOF	1	341600008
R26-28	RES MF $100 \mathrm{~K} 1 \% 1 / 4 \mathrm{~W}$	19701	5043ED 100 OKF	3	341500000
R30	RES MF $100 \mathrm{~K} 1 \% 1 / 4 \mathrm{~W}$	19701	5D43ED 100 OKF	1	341500000
R32	RES MF 9.09K 1\% 1/4W	19701	5043ED9K090F	1	341392000
R34	RES ITF $10.0 \mathrm{O} \quad 1 \% 1 / 4 \mathrm{~d}$	19701	5043EDIOKDOF	1	341400000
R35	RES MF 5.11K 1\% 1/4W	19701	5043EDSK110F	1	341368000
R36	RES VAR $10 K 10 \%$ 0.5W	73138	72PR10K	1	311328000
R37	RES MF 3.92K $1 \% 1 / 4 \mathrm{~W}$	19701	5043ED3K920F	1	341357000
R38	RES MF $7.87 \mathrm{~K} 1 \% 1 / 4 \mathrm{~L}$	19701	3043 ED 7 K87 OF	1	341386000
R39	RES MF 80.6K 1\% 1/4w	19701	$5043 E D 80 K 60 F$	1	341487000
R40	RES MF 806K 1\% 1/4W	19701	5043EDS06K OF	,	341587000
R42	RES MF 7.50K $1 \% 1 / 4 \mathrm{~W}$	19701	5043 EDTK50dF	1	341384000
R44	RES YAR $200 \mathrm{~K} 10 \%$ 0.5W	73138	72PR200K	1	311401000
$R 45$	RES VAR IOK $10 \% 0.54$	73138	72PR10K	1	311328000
R47	RES MF 3.92K $1 \% 1 / 4 \mathrm{~S}$	19701	5043ED3K92dF	1	341357000
R48	RES MF 909K $1 \% 1 / 4 \mathrm{~d}$	19701	S043ED909KDF	1	341592000
R49-52	RES MF 47.5K $1 \% 1 / 4 \mathrm{w}$	19701	5043E047K50F	4	341465000
R53	RES MF 100K 1\% 1/4W	17701	$5043 E D 100 \mathrm{OF}$	1	341500000
R54	RES MF 200K 1\% 1/4W	19701	5043ED200K OF	1	341529000
R55	RES VAR $10 \mathrm{~K} 10 \% 0.514$	73138	72FR10K	1	311328000
RT1	THERMISTOR 50 OHM 10\%	00241	LE15J1-M	1	325007000
$\times 14$	SOCKET IC 6 PIN	06776	ICN-063-S3TG	1	473054000
XAR4-7	SOCKET IC 8 PIN	06776	ICN-083-S3-6	4	473041008
$\times 1 \mathrm{Cl}$	SOCKET IC 40 PIN	06776	1CN-406-S4-TG	1	473052000
XIC2	SOCKET IC 24 PIN	06776	ICN-246-54-G	1	473043000
XIC6	SOCKET IC 16 PIN	06776	ICN-163-SJ-G	1	473042000
XICs-10	SOCKET IC 14 PIN	06776	ICN-143-S3-G	2	473019000

04222502A OPCODE: 0 REY: $A *$ CHOPPER MODULE
MODEL: 4200

04216102A OPCODE: 0 REY: $A *$ PWA CHOPPER DUROID

MODEL: COMMON

042360000 DPCODE: 0 REV: A* (G) CALIBRATOR ASSY 4200

MODEL: 4200

REFERENCE DESIGNATOR	DESCRIPTION	$\begin{aligned} & \text { FED. } \\ & \text { CODE } \end{aligned}$	MANUFACTURER PART NUMBER	aty	BEC PART MUMBER
A3(4)	(G) PWA CALIBRATOR	04901		1	042227008
C6	CAP FT 1000PF 20\% 500V	TUSOHX	2499-003-X5S0102M	1	227105000
11	COMFIECTOR HOUSINE	27264	22-01-2021	1	479415000
12	CONNECTOR TYPE "M"	24931	25JR109-3	1	479219000

```
04222700B
OPCODE： 0 REV：CC（G）PWA CALIBRATOR
MODEL：4200
```

REFERENCE DESIGNATOR	DESCRIPTION						$\begin{aligned} & \text { FEO } \\ & \text { CODE } \end{aligned}$	manufacturer PART NUMBER	QTY	BEC PART NUMBER
AR 1	IC 3	301 A	OP A	AMP			27014	LM301AN	1	535012000
$C 1$	CAP	CER	4700	PF 1	10\％	300	33885	TYPE JF	1	224219000
C2	CAP	MICA	A 100	OF	5\％	3004	20307	DM5－FC101J	1	205006000
C3	CAP	EL 1	1 OUF	20\％	\％ 25		54217	SM－25－4B－10－M	1	293336000
C4	CAP	UAR	CER	3.5	5－18	F 2504	91293	9373	1	231011000
C5	CAP	CER	1000	0pF	10\％	600%	16546	CE－102	1	224310000
C7	CAP	EL	1 OuF	20\％	\％ 25		54217	SM－25－VB－10－M	1	283336000
C3	CAP	CER	0.01	1 uF	100		33883	BT Z	1	224119000
C9	CAP	MICA	A 360	pF 5	5\％ 3	OV	14655	CD5EC360J	1	205005000
Clo	CAP	MICA	A 200	OF	5\％	00%	146E3	CDSFAE01J	1	205024000
C11	CAP	MICA	A 100	F 5	5\％ 3	OV	14655	CDSWCC：00」	1	205002000
C12	CAP	YAR	CER	3.5	5－18	F 2504	91293	9373	1	291011000
CR1－2	DIDO	OE HS	SCH10	001	CIN	263）	29480	HSCH－1001	2	530174000
CRJ	0100	DE MV	V－16玉				04713	MV1650	1	5こ0アも2000
1 Cl	1 C A	AD581	1 JH Y	YOLT	T RE		51640	ADSS 1 JH	1	535053000
$L 1$	INDU	JCTOR	R 4．7	OuH	10\％		24226	$10 / 471$	1	400384000
L2	INDU	JCTOR	R 0.5	56uH	H 10		24226	$10 / 560$	1	400382000
L3	I NDU	JCTOR	R 0．0	033	UH 1		04901	400586000	1	400386000
Q1	TRAN	HS NP	PN 2N	439			04713	2N3904	1	528071000
RI	RES	MF 1	1． 50 K	K 1\％	\％ 11		19701	5043 EDIKEOOF	1	341317000
R2－3	RES	MF 1	100 K	1\％	$1 / 4$		19701	$5043 E D 100 K$ OF	2	341500000
R4	RES	YAR	iK 1	10\％	0.5		32997	3299x－1－102	1	311410000
R6	RES	MF 1	100 K	1%	1／4		19701	5045 ED100k OF	1	341500000
R7	RES	MF 2	2.43 K	1\％	\％1／		19701	RH550－2431－F	1	341357000
RS－9	RES	MF 1	1．00x	K 1\％	\％ $1 /$		19701	5043 EDIK00 OF	2	341300000
R10	RES	MF 1	10．0K	1\％	$1 /$		19701	5043 EDI OK O OF	1	341400000
R11	RES	MF	5．11k	K 1\％	：1／		19701	5043 EDEK11 OF	1	341368000
R12	RES	MF 1	1．21K	1\％	\％1／		19701	5043 ED IK2 I OF	1	341508000
R13	RES	MF 1	1．30K	1\％	\％ $1 /$		19701	5043 EDIK3 0 OF	1	341311000
R14	RES	MF 7	75.0	OHM	M 1\％	$1 / 4 W$	19701	5043 ED 5 SROOF	1	341184000
R15	RES	MF 3	50 OH	HM 0	0.1%	1／4 6	64537	PMES5－TO	1	325916000

```
04223100C OPCODE: 0 REY: D* (G) PWA POWER SUPPLY
MODEL: 4200
```



```
04223100C OPCODE: O REV: D* (G) PWA POWER SUPPLY
```

MODEL: 4200

REFERENCE DESIGNATOR	DESCRIPTION					$\begin{aligned} & \text { FED. } \\ & \text { CODE } \end{aligned}$	MANUFACTURER PART NUMBER	QTY	$\begin{aligned} & \text { BEC } \\ & \text { PART NUMBER } \end{aligned}$
R1	RES	MF 1	10.0 K	1\%	$1 / 4 \mathrm{w}$	19701	5043 ED $10 K 00 F$	1	341400000
R2	RES	MF	4.99K	K 1\%	1/4 4	19701	5043 ED4K990F	1	341367000
R3	RES	MF 2	2.21K	K 1\%	$1.74 W$	19701	5043ED2K210F	1	341333000
R4	RES	MF 1	12.7K	K 1\%	$1 / 4 \mathrm{~d}$	19701	$5043 \mathrm{ED12K7OF}$	1	341410000
R5	RES	YAR	500	OHM	$10 \% 0.5 \mathrm{~m}$	73138	72PR500	1	311305000
R6-8	RES	MF 4	4.99 K	K 1%	184 w	19701	5043 ED 4 K 99 OF	3	341367000
R9	RES	MF 1	1.00K	- 1%	1/4 d	19701	5043 ED 1 KODOF	1	341300000
R10	RES	MF 4	4530	OHM 1	1\% 1/4w	19701	5043 ED453R OF	1	341263000
R11	RES	YAR	100	OHM	$10 \% 0.5 \mathrm{w}$	73138	T2PR100	1	311408000
R12	RES	MF	4640	OHM 1	$1 \% 1 / 4 W$	19701	5043 ED 464R OF	1	341264000
R13	RES	MF 1	100 K	$1 \% 1$	1/4w	19701	5043 EDI OOKOF	1	341500000
R14	RES	COMP	IP 330	O OHM	1 5\% 1 w	01121	G83315	1	302087000
R15	RES	MF 5	5.11K	1\%	184W	19701	5043 EDSK110F	1	341368000
R16	RES	MF 2	2.21 K	K 1\%	174 w	19701	5043 ED2K21 OF	1	341333000
R17	RES	MF 2	2.80 K	K 1%	$1 / 4 \omega$	19701	5043 ED2R8000F	1	341343000
R18	RES	MF	5.11 K	K 1%	1/4 W	19701	5043 EDSK11 OF	1	341368000
R19	RES	MF 5	51.1 K	く 1\%	184 W	19701	5043 EDS 1 KIOF	1	341468000

```
0422320DE OPCODE: O REY OD (G) HEAT SINK ASSEMBLY
```

MODEL: 4202

4652890DB OPCODE: 0 REV: AD (G) SWITCH CABLE UNIT

MODEL: 4200

042356019 OPCODE: 0 REV: C* (G) REAR PRNEL UNIT
MODEL: 4200-S16

REFERENCE DESIGNATOR	DESCRIPTION	$\begin{aligned} & \text { FED } \\ & \text { COOE } \end{aligned}$	MANUFACTURER PART NUMBER	QTY	BEC PART NUMBER
P7	CONNECTOR LINE CORD	82399	EAC309	1	47728:000
52	SWITCH DUAL SLIDE DPDT-DPDT	82399	47206 LFR	1	465279000

```
04235501A OPCODE: O REV: B* (G) REAR PANEL ASSY
```

MODEL: 4200-S16

REFERENCE DESIGNATOR	DESCRIPTION	$\begin{aligned} & \text { FED. } \\ & \text { CODE } \end{aligned}$	MANUFACTURER PART NUMBER	aty	BEC PART NUMBER
F1	FUSE 0.3 AMP $250 V$ MDL	54426	MOL 0.3	1	545507000
J10	CONMECTOR 5 CIRCUIT	06383	CE156F24－5－C	1	479394000
J15	CONNECTOR PIN FEMALE	27264	0206－1231	1	479320000
J20	CONN COAX BNC	54420	UG－E251U	1	479123000
TI	TRAMSFORMER POWER	04901	44609100 A	1	44609100 A

04231701B OPCODE： 4 REV：EC（G）PWA INTERFACE 4200－01A OPT
MODEL： 4200

REFERENCE DESIGNATOR	DESCRIPTION	$\begin{aligned} & \text { FED } \\ & \text { COOE } \end{aligned}$	MANUFACTURER PART NIJMEER	QTY	BEC PART NUMBER
C 1	CAP TANT 1．OUF $10 \% 35 V$ ONLY	56289	1960105x9035HP：	1	235216000
C2－3	CAP EL I OUF 20\％ 254	54217	SM－25－YE－10－M	2	283336000
CR 1	DIDDE SIG 1N914	01295	1 M914	1	530059000
11	CONNECTOR 24 PIN（GPIB）	32575	552230－1	1	479350000
P2	（G）COMNECTOR 5 PIN RT ANG MOD	04901	477333009	1	47733300 A
R1	RES NETUORK 4．7K 2\％1．8W	01121	3168472	1	345020000
S 1	SWITCH SLIDE DIP SPST $\times 7$	75378	206－7－LP	1	465300079
U1	IC EPORM PROG．3228G 4200－01A	04901	53432200 H	1	53432200 H
U2	IC $74 L S 32$ QUAD 2 INPUT OR	01295	SN74LS32N	1	534163000
U3	IC 741504 HEX INVERTER	01295	SNT 4LS O4N	1	534155000
U4	IC 9914ANL IEEE BUS PROCESSOR	01295	TMS9914ANL	1	534283000
U5	IC 7415373 OCTAL LATCH	01295	SN74LSJ73N	1	534237000
U6	IC 75160 IEEE BUS TRANSCEIVER	01295	SH751608N	1	534286000
U7	IC 75161 IEEE BUS TRANSCEIVER	01295	SN751618N	1	534287000
XS 1	SOCKET IC 8 PIN	91506	508－AG70	1	473053000
xU1	SOCKET IC 24 PIN	06776	ICN－246－54－G	1	473043000
XU4	SOCKET IC 40 PIN	06776	ICN－406－S4－TG		473052000
xu5－3	SOCKET 1C 20 PIN	06776	ICN－203－53－G	3	473065000

04223500A OPCODE： 4 REV：E9 PWA IHTERFACE 4200－0I日 DFT
MODEL： 4200

		FES．	MAMUFACTURER		EES
EEEELNATDF	ここご「ご，ind	Cnes	PGPT HMMEER．	QTr	Fript HMMEER
H	CGWHECTRP 2 PIH ETRAISHT	ここご年	ここー0こーごご	1	4ṪEE1000
E	GHUHT 2 CIFCUIT	こアご4	15－5\％－1924	1	4 Sここちこのハ0
E	COHtECTR 2 PIH STRAIGHT	ごごち	ここー！ごーこ0こ1	1	
0.1	CAF NJĠ 4FOF S\％ड004	20507		1	205018000
02	CAF TART ITUF $10: \mathrm{ES}$	56こき9		1	2EE5ES000
Cこ	CAF CES 0．1UF 30% SOV	042ここ	ER215E104MFA	1	こコサご 0000
CO	CAP EL 1010 20：：25y	¢ちごア	SM－ES－vE－10－M	1	28ここう6000
ci－12	CHF CEP 0．luF $20 \because \because 50 \%$	14こここ	SFご気104MAA	8	ここ4260000
， 2	GOHHECTOR 24 PIN EGPIE？	ここ575	Eこここごロー1	1	479550000
P1	（5）COHHEETGR S PIH RT ANE MOD	04501	4ア7こうこ边	1	$4 \div こ こ こ 00$ A
PI 1	RES MF 1．0OM 1\％1：4	14674	$504 J E D 1 M 0007$	1	341500000
R2		13－01	504EE5こOFEOF	1	玉－1130000
Rご－4	RES MF 4．7ER $1: 184$	13701		2	ご 1 こ6500
Fi＇	FES HETHOPR 4．アK 2\％，EW	$0: 121$		1	ご¢020000
RFic	RES HETHORK 2こ： 2% 1．Fid	01121	4095ここう	1	ミ－5！44こA

MODEL：4200

RこFEREHCE		$F \equiv$ ．	MAHMFACTURER		EEC
LESITMATOR	CESCRIFTIDH	COCE	FART HURAEER．	STM	PART HUAEES
E 1	EUITCH DIP EPET E CKT FIANO	LAMB	ET－e－2	1	4E52990¢R
111－2	IC EECEE IHTEFFACE	ご可	CPGこCE5A	\geq	Eご41100A
いご年	IC $74 H E \cap 4$ HES IHYERTER	$0 こ ゙ ら 5$	C0゙4HCG4E	2	5ご4ごこ04閏
45	IC FTOS EIPPLY VOLTAGE EUPYR	01235	TLF\％0Sprpoiz9s	1	こごくここ0回
UE	If THHCT4 IHAL D TYPE FLO	0ごミき	COTHHCT4E	1	ここ44こちハ2A
Li ${ }_{i}$	ic Jeoc cru rmos	T0EHIS	THFここSCORAP	1	Eこ440900A
U8	IC EPROM PROG 452AR 4200	04901	534452001	1	534452009
19－10	IC TGHCES QUAD 2 IHPUT OF	0ごこ5	C0T4HCEこE	2	5ご42501A
411	IS ESt BKxP RAM CMCS 20 UIP	T0EHIP	TCEEE4PLー：	1	5 E 440 E 100
112		03755	CLTHHC1E E	1	
1：5	IC $\overline{\text { FHEE40 OCTHL EUS }}$	027－5		1	5こ442503
4：E	IC GEMARHL IEEE EUS FRCOEEERK	01255	THEP314ntL	1	Eこ42日E000
117	T¢ FEiE？IEEE EUS TRANECEIUEP	01275	EHTEIEのPH	1	ET：286000
418	IC FElE：IEEE RUS TRAHECEI：ER	01295	EHFEしたい	1	Eड42ET000
淮1－2	QOCRET iC 40 PIH	0ET7	ICN－40E－EC－TJ	2	$4 \overline{5} 052000$
二uこ－4	EOCVET IC I 4 FIH	のミアゴ心	ICi－143－39－5	2	¢ -5019000
$\because 45$	E日CEET iC P PIH	0EFE	ICN－03こ－Es－r	1	475041000
淮会	E－以ET IS 14 Pith	がーーを	ICri－14S－ES－C	1	¢－50：-00
久い	SOCSET IC 40 Pid	吅云它	TCri－40日－¢4－TG	1	$44^{5} 5052000$
ふus	EOEET IC $2 E \mathrm{PIN}$	OETF	ICH－こE6－ミi－TG	1	475044000
天い9－10	GOCRET IC ： 4 PIN		ICH－ 4 －	2	45 C 913000
天いi	SOC：ET IC 23 PIN	のもアT心	ICH－23E－S4－TG	1	45 Sc 44000
¢以：	E日EヒミT IC 16 PIN	Gもうアも	ICH－1ES－ES－「	1	4 こ042000
〇！14	grceitic 24 只皿		ICH－24	1	455045000
2u15	GロCरET ic 20 Pid		1CH－2Cこーミこー「	1	$47 \div 06000$
	ミロCiET ！ 40 PIN	0 07ア6	ICH－4 OE－S4－TL	1	47う052000
天u1p－13	GOEST iC zu PIH	OETFO	ICH－20ア－EコーC	2	
Y1	CRYETAL こ．STES45 MH＝	EDntr	M⿴囗大玉EA	1	ごア0ここ000

99100614C OPCODE：O REY：A＊4200－018
MODEL： 4200

REFERENCEDESIGNATOR DESCRIPTION					FED． CODE	Manufacturer		BEC	
					PART NUMBER	QTY	PART NUMBER		
ICGAS	IC EPROM	PROG	45089	4200		04901	53445000 A	1	53445000 A
IC7A5	IC EPROM	Prog	451 AR	4200	04901	53445100 A	1	53445：00A	

04223002B OPCODE：0 REV：O＊PWA INPUT－03 OPT
MODEL：4200

| REFERENCE | FED，MANUFACTURER | PEC |
| :--- | :--- | :--- | :--- |
| DESIGNATOR DESCRIPTION | CODE PART NUMRER | QTY PART NUMEER |

Same as standard PWA Input P／N 044230028

99100624C OPCODE: O REY: 8* 4200-018-06 OPT

MODEL: 4200

REFERENCE DESIGNATOR	DESCRIPTION					FED. CODE	manufacturer PART NUMBER	Qty	$\begin{aligned} & \text { BEC } \\ & \text { PART NUMBER } \end{aligned}$
106A5	IC	EPROM	PROG	427 AA	4200	04901	53442700 A	1	534427000
ICTAS	10	EPROM	PROG	428AA	4200	04901	53442800A	1	534428000
U8A23	IC	EPROM	PROC	429AR	4200	04901	534429008	1	534429008
U14923	15	82 C 54	TIMER			34371	CP82C54	1	534410009

SECTION VII SCHEMATIC DIAGRAMS

Schematic Diagrams Page
7-1 Main Frame Al, Schematic Diagram 7-3
7-2 Display Board A2, Schematic Diagram 7-5
7-3 Power Reference Board A3, Schematic Diagram $7-7$
7-4 Chopper Board A4, Schematic Diagram 7-9
7-5 Control Board A5, Schematic Diagram (Sheet 1 of 2) $7-11$
7-5 Control Board A5, Schematic Diagram (Sheer 2 of 2) $7-13$
7-6 Input Module Board A6, Schematic Diagram (Sheet 1 of 2) $7-15$
7-6 Input Module Buard A6, Schematic Diagrann (Sheet 2 of 2) 7-17
7-7 Power Supply Board A7, Schematic Diagram 7-19
7-8 Options, Schematic Diagran 7-21

C831275A

$3: \because$ usto on g200 states omr

E831271B

D831271A

NOTE LRI ANO CR2 USEO ON 92E-SS ONLY.
2. RTAND RB USED WITH 42IO-7E AND

4210-gE ONLY.
B831045G

D831276B

A-1. DESCRIPTION.

A-2. The IEEE-488 (GPIB) bus interface option permits external control of the Instrument and data capture by a wide variety atiol conters. may be operated wlin orif gpis-compatible goals, with no specialized control interface requirements for proper electrical operation.

A-3. Although no standard GPIB interface data formats have yet been established, certaln common practices are achieving de-facto adhered to in the design of the 4200-01A option interface formats and delimiters, thereby assuring the user of format compatibillty with almost all controllers.

A-4. CAPABILITY.

A-5. Certaln subsets of full GPIB functions are specifled in the IEEE-488 1978 Standard. The Model 4200-01A option includes the following capabilities:

SHI SOURCE HANDSHAKE complete capability
AHI ACCEPTOR HANDSHAKE complete capability
T6 BASIC TALKER, SERIAL POLL, UNADDRESS IF MLA, NO TALKER ONLY capabllity

TEO NO EXTENDED TALKER capability
L4 BASIC LISTENER, UNADDRESS IF MTA, NO LISTENER ONLY capability

LEO NO EXTENDED LISTENER capabillty
SRI SERVICE REQUEST capability
RLI REMOTE-LOCAL capabIIIty, LOCAL LOCKOUT capability

PPO NO PARALLEL POLL capability
DCO NO DEVICE CLEAR capability
DTi DEVICE TRIGGER capability
CO NO CONTROLLER capabillity
MLA $=$ My Listen Address
MTA $=$ My Talk Address

```
A-6. INSTALLATION.
A-7. Option 4200-0iA consists of interface
board A23. Electrlcal interconnections are
shown in figure 7-8. To Install the inter-
face board, proceed as follows:
Turn off power to the instrument.
cover of the instrument and sllde the top
cover back and off.
```

C. Cut the cable tie in the instrument that holds the extra power plug (the plug with two blue wires and one black wire).
d. Remove the six screws that fasten the control board and replace them with the six mounting posts supplied with the -0iB package.
e. Position the interface board in the instrument so that the mounting holes in the interface board line up with the mounting posts in the instrument. Attach the interface board to the mounting posts with six 4-40 screws and lockwashers supplied with the interface board.
f. Connect the 40 pin ribbon connector to the front edge connector of the interface board.
g. Connect the power plug in the instrument to the 4 -p in brown connector on the interface board.

A-8. OPERATION.

A-9. Address Assignment. Before using the instrument in the GPIB, it must be assigned a unique address. This address is set using the five right-most sections of rear-panel address switch Si in accordance with Table A- 1.

A-10. Message Terminator. Positions 6 and 7 of the rear-panel switch Si permit a choice of message terminators, as shown in Table A-2.

A-11. Command Response. In addition to Talk and Listen Address commands, the instrument responds to the followling:
a. Address Commands (Response If Listen Addressed).

Mnemonic	Name	Function
GTL	Go To Local	Enables panel Control
GET	Group Execute Trigger	Trigger a measurement
b. Listen Address Group.		

Mnemonic	Name	Function
UNL	De-address as Iistener	

c. Talk Address Group.

Mnemonic	Name	Function
UNT	Untalk	De-address as talker

table A-1.		ADORESS ASSIGMMENT					
*Decimal Address	Talk Code	Listen Code		$\begin{gathered} i+c \\ 4 \\ \hline \end{gathered}$	3		ing
0	8	SP	0	0	0	0	0
1	A	!	0	0	0	0	1
2	B	"	0	0	0	1	0
3	C	*	0	0	0	1	1
4	0	\$	0	0	1	0	0
5	E	\%	0	0	1	0	1
6	F	8	0	0	1	1	0
7	G	1	0	0	1	1	1
8	H	1	0	1	0	0	0
9	1)	0	1	0	0	1
10	J	*	0	1	0	1	0
11	K	+	0	1	0	1	1
12	L	,	0	1	1	0	0
13	M	-	0	1	1	0	1
14	M	-	0	1	1	1	0
15	N	$/$	0	1	1	1	1
16	0	0	1	0	0	0	0
17	P	1	1	0	0	0	1
18	0	2	1	0	0	1	0
19	R	3	1	0	0	1	1
20	S	4	1	0	1	0	0
21	T	5	1	0	1	0	1
22	U	6	1	0	1	1	0
23	\checkmark	7	1	0	1	1	1
24	x	8	1	1	0	0	0
25	Y	9	1	1	0	0	1
27	1	;	1	1		1	1
28	V	$<$	1	1		0	0
29	1	=	1	1		0	1
30	Λ	$>$	1	1		1	0
*Address 31 (11111) wlll not be recognized and should not be used.							

MESSAGE-TERMINATOR SELECTION		

A-11. (Continued).
d. Unencoded Commands.

Mnemonic	Name	Function
IFC	Interface Clear	Initiallze Interface
REN	Remote Enable	Permits remote Operation

A-12. Operating States. The Instrument operates in two separate states, whether in local or remote control. One state is the measurement state, during which the instrument performs and displays measurements; the other state is the data entry/recall state, which is operative during number entry or after recall of stored information. When operating on the bus, it is important to remember that the instrument can send only that information which appears on the front panel display. When the instrument is in the store or recall mode, the LED display and annunciators bllink on and off to indicate that the displayed value is not a measured value.
a. Measurement Mode Functions. The following functions change the measurement mode of the instrument:

Keyname	GPIB	Function
PWR MCDE	P	Displays measured voltage
dB MODE	B	Dispiays measured d8mV

b. Command Functions. Table A-3 describes command functions.

Keyname	GPIB	Function
dB CAL FAC	D	Cal Factor Constant, In dB
RANGE AUTO	A	Sets autorange mode
RANGE HOLD	0	Sets range hold mode
GHz	F	Interpolates Freq/Cal Factor Table

TABLE A-3. COMMAND functions			
Command	Arm	Disarm	Description
0	10	00	Hold command: the last reading, or the last keyboard entry, will remaln on the display. The instrument will continue to read probe input, but will not update the display. The instrument cycle time will be greatly reduced because of the measurement-cycle overhead that is not executed during the hold command.
v	IV	OV	Service request command: the service request will be issued by the instrument upon completion of a measurement.
J	11	03	Raw-data command: the instrument will not average or smooth any of the measurements.
U	14	OU	Limit command: the instrument will issue a service request if any limit is exceeded. If a limit is exceeded and a service request is issued, the U command must be rearmed to become operational agaln.
T			Trigger command: this command, identical with the IEEE-488 group execute trigger, Initiates a measurement cycle.
INTERFACE CLEAR and DEVICE disarm all the above commands.			

A-12. (Continued).
c. Service Request Status Codes. Service request status is defined by a five-bit code, as defined in Table A-4.

TABLE A-4. SERVICE REOUEST STATUS					
BIT					Meaning
4	3	2	1	0	
x	x	x	0	1	CH 1 low limlt exceeding
x	x	x	1	0	Ch 1 high limit exceeding
x	0	1	x	x	Ch 2 low limit exceeding
x	1	0	X	X	Ch 2 high limit excoeding

d. Data Entry/Recall Functions. These functions enable entry or retrleval of numeric constants used by the instrument. Operation reverts to the measurling state after data storage.

Keyname	GPIB	Function
LIMITS dB LO	L	Low limit value in dB
LIMITS dB HI	H	High limit value in dB
SELECT CHNL	N	Selects channel number
dB REF LEVEL d8	R	$d B$ reference level for $d B$ modes
SENS	S	Selects Sensor Data Tables

e. Special functions. Special functions include the automatic zeroing and clear functions.

Keyname	GPIB	Function
ZERO	Z	Initiate an automatic zeroing cycle
CLR	C	Clear numeric entry to zero
CAL	K	Performs I mW Auto Calibration

f. IEEE-488 Bus Command Extensions. The following functions are added to bus operation:

Name	GPIB	Function
ADR.ZERO	Y	Zero selected ranges $(0-7)$
SET RANGE	G	Set to selected range $(0-7)$

These commands must be preceded by an approprlate argument. The argument for Y is the span of ranges to be zerced; for example: $26 Y$ specifies zeroing of ranges 2 through 6. If only one range is to be zeroed, the argument must begin and end with the same code (e.g., liy to zero only range l). The argument for G is the range number $10=10 \mathrm{nW}$ to $6=10 \mathrm{nW}$ for $4200-4$ sensors) to be set. from execution of the Y command to measurement mode, the maximum time is as follows:

A-12. (Continued).

Command	Time	Command	Time
OOY	2.3 seconds	04Y	3.8 seconds
019	2.9 seconds	05Y	4.0 seconds
02Y	3.3 seconds	06Y	4.3 seconds
$03 Y$	3.5 seconds		

The "Y" command allows no wait time for a sensor to reach a stable zero before actual offset storage occurs.

note

The G command sets the 4200 to an Internal range which may not correspond to the range code output in the data string in Paragraph 8-21. The table below relates internal and apparent range codes:

LEVEL		INTERNAL	APPARENT
$+10 \mathrm{~dB}$	10 mW	-	-
		6	
$\begin{aligned} & +6 d B \\ & 0 d B \end{aligned}$	3.98 mW	-	
	1 mw		6 -
		5	
$\begin{aligned} & -10 d B \\ & -11 d B \end{aligned}$	$100 \mu \mathrm{~W}$		- 5-
	$79.4 \mu w$	-	
		4	
$\begin{aligned} & -20 d B \\ & -21 d B \end{aligned}$	$10 \mu W$		- 4 -
	$7.94 \mu \mathrm{~W}$	-	
		3	
$\begin{aligned} & -30 \mathrm{~dB} \\ & -32 \mathrm{~dB} \end{aligned}$	$1 \mu W$		-3-
	631 nW	-	
		2	
$-40 \mathrm{~dB}$	100 nW		- $2-$
$-42 d B$	63.1 nW	-	-
		1	
$\begin{aligned} & -50 d B \\ & -52 d B \\ & -60 d B \end{aligned}$	10 nW		- 10
	6.31 nW	-	ψ
	1 nW	0	-
		ψ	

For the series 4 and 5 sensors add 10 dB to the internal and apparent levels.

For the serles 6 sensor add 20 dB to the internal and apparent levels.
9. Bus Availability. When the Model 4200 is sent a string, it does not normally tie up the bus wnile responding to the string; other bus communlcations are possible during the interval. The 4200 can inform the controller when it is finished by use of the Service Request see paragrpah 8-12d, if this is desired.

The Model 4200 can, nowever, be made to lock up the bus whlle it is responding to a string - If such action is desired - by sending it two strings in succession (even if the second string is only a Null command).

Example: A "zero" command: wrt 716,"Z" Followed by a "talk" command: red 7i6,A,B,C

A-13. TIME RESPONSE CHART.

Refer to Tables 1-3 for the Model 4200 sensor measurement through the IEEE-488 Bus.

A-14. REMOTE PROGRAMMING.

NOTE

It is assumed that the user is acqualnted with GPIB principles and terminology. Refer to the controller instruction manual for the syntax needed to create speciflc bus commands and addressing sequences. All examples given apply to the HP 9825 calculator.

A-15. Bus Programming Syntax. The bus programming syntax mirrors the front-panel keystroke sequence closely. Each key has been assigned an alphanumeric character and sending that character is equivalent to pressing that front-panel key. The resulting operation is indistinguishable from local control. Numerical values are translated by the GPIB interface so that commonly observed formats may be used. Fixed formats and floating point formats may both be used. These representations are converted to their equivalent fixed polnt values and the sign information is post-fixed automaticaliy, thereby ensuring that natural notations for numbers will be accepted by the Instrument.

A-16. Suppose that it is desired to set the instrument to the PWR mode. The HP 9825 calculator could be programmed:

> wrt 716, "p"

The "wrt" Instructs the calculator to send data on the bus to one or more listeners. The number following is the address information; 7 is the calculator address and 16 is the instrument address. (all examples in this appendix will use 16 as the instrument address, although any valid address can be assigned to the instrument.) when the calculator Interprets the first part of the line, it will assert the ATN line to signify that commands or addresses will be sent on the bus. Following that, It will send three bytes or characters: Unllsten, the calculafor Talk Address and the instrument Listen Address. This information will configure both the calculator and the instrument for the data transfer. After the last command byte has been accepted, ATN wlll be released to the false state by the calculator. All information on the bus is interpreted as data in this mode. Whlle in the data mode, the calculator will send the character "p" to the instrument. At the instrument, this will be interpreted as equivalent to pressing the MODE PWR key and that function will be executed. Because there is no more data to be sent, the calculator wlll send a delimiter (the preselected ASCII code for the termination character). The instrument recognizes the termination character as an end-of-message slgnal and returns to the bus Idie condition.

A-17. The preceding discussion of the sending of a single programming byte serves to lllustrate two important points: every data transfer is preceded by a
command/address preamble and each transfer is terminated by a termination character. In the preceding example, six characters were sent on the bus; only one was a programming byte.

A-18. The measurement mode functions (P, B, A, O) and the special functions (Z, K) do not expect any numerlc value. These functions all execute as recelved. For example: the following will program $d B$ and autorange mode:

$$
\begin{aligned}
& \text { wrt 716, "8A" } \\
& \text { or } \\
& \text { wrt 716, "AB" }
\end{aligned}
$$

Note that the sequence is un important, except that each function executes in the order it is received on the bus.

A-19. Suppose that the instrument is to be zeroed automatically, and then asked to send the reading in the PWR and RANGE AUTO mode. The HP 9825 calculator could be instructed as follows:

$$
\begin{aligned}
& \text { wrt 716, "APZ" } \\
& \text { red } 716, \mathrm{v,} \mathrm{~S}
\end{aligned}
$$

The automatic zeroing cycle time is approximately 10 to 22 seconds, depend-ing on range. Until zeroing is com-pleted, the instrument wlll be unable to respond with new data. The first line of the preceding instructions sets the operating mode and Inltiates the zerolng cycle. The last line reads the response from the instrument. The instrument response consists of two numeric values: the first value is the front panel reading and the second is a status value (normally zero). These two numbers wlll be stored in the calculator variables (storage locations) V and S. Note that each data transmission from the instrument consists of two values. When the status value is non-zero, indicating an error condition, the data value wlll be set to zero. The program will normally test the status value to assure valid operating conditions.

A-20. Store/Recall functions Syntax. The general syntax for store/recall functions is the same as the front panel sequence; if a numeric value immediately precedes the function, that value will be stored; otherwise, the existing stored value will be recalled to the front panel. These functions (L, H, D, F, S, N, R, J, U, V) thus operate in a dual mode. When the instrument is in the store or recall mode the display will blink to indicate that the instrument is not in the measurement mode. The instrument is returned to the measurement mode by sending any of the following: $P, 8, A, 0, T, 1 J, 0 J, 1 Q, 00$, iv, OV, iU or OU.

A-21. Suppose that it is desired to store the current power level in dBm into the dBm reference so that all future readings wlll be referenced to the current value. Allowance must be made for the posslbllity that the
current value is a $d B$ relative value. To do this, the current d8 value must be read, the existing dB reference must be recalled, the true d8m value must be computed and this value must be stored into dB reference. The calculator could be instructed as follows:

$$
\begin{aligned}
& \text { red } 716, V, S \\
& \text { wrt } 716, \text { "Rn } \\
& \text { red } 716, X, S \\
& v+X \rightarrow Y \\
& w r t 716, Y, \text { "R" }
\end{aligned}
$$

Note that R is used twice in the program, the first time to obtain the existing value for the d 8 reference and the second time to store the computed value. Also, note that the two read statements (red) each fetch a different value, the first value is the power value in dB and the second is the dB reference.

A-22. Output Data Format. The data output of the instrument consists of two numerlc values. The first is the numeric data in the display and the second is the status information. The normal data output wlll have the following format:
abcsddddEsd, S, R (tc)
Where:

$$
\begin{aligned}
& a b=\text { mode (power in milliwatts }=P W \text {; } \\
& d B=D M ; d B r=D R) \\
& c=\text { channel }(A=1 \cdot B=2 ; C=3) \\
& \mathrm{s}=\operatorname{sign}(+ \text { or }-) \\
& \text { dddd }=\text { data (four digits, each diglt } \\
& \text { 0-9) } \\
& \text { Esd = exponent, sign, digit } \\
& \text {, = data delimlter } \\
& \mathrm{S}=\mathrm{status} \text { diglt: } \\
& 0 \text { = no error } \\
& 1 \text { = entry too small } \\
& 2=\text { entry too large } \\
& 3 \text { = measurement under range } \\
& 4 \text { = measurement over range } \\
& 5 \text { = zero acquisition out of } \\
& \text { range - excessive positive } \\
& \text { offset } \\
& 6 \text { = zero acquisition out of } \\
& \text { range - excessive positive } \\
& \text { offset } \\
& 7 \text { = channel } 3 \text { over/under range }
\end{aligned}
$$

$$
\begin{aligned}
R & =\text { Range Code, coded per Table A-4 } \\
\text { tc } & =\text { termination character }
\end{aligned}
$$

A-23. Hold Indication Function Syntax. The Hold Indication function, when enabled (1Q), automatlcally does a measurement cycle following its recelpt and then holds the Indication untll recelpt of a T, $O Q$ or another 10 command. it is Intended primarily for use with the Trigger or Group Execute Trigger commands. Following its recelpt, the instrument continues to measure but does not update the display. This can be use-ful where response time is important since

APPENDIX

TABLE A-4. RANGE CODES FOR VARIOUS SENSORS					
Range Code	Sensor Type				
	4200-4E	4200-5E	4200-6E	4200-7E	4200-8E
0	$\leqslant-50 \mathrm{dBm}$	<-40 dBm	$\leqslant-30 \mathrm{dBm}$	$\leqslant-20 \mathrm{dBm}$	$\leqslant-10 \mathrm{dBm}$
1	$\leqslant-40 \mathrm{dBm}$	$\leqslant-30 \mathrm{dBm}$	$\leqslant-20 \mathrm{dBm}$	$\leqslant-10 \mathrm{dBm}$	$\leqslant 0 \mathrm{dBm}$
2	$\leqslant-30 \mathrm{dBm}$	$\leqslant-20 \mathrm{dBm}$	$\leqslant-10 \mathrm{dBm}$	$\leqslant 0 \mathrm{dBm}$	
3	$\leqslant-20 \mathrm{dBm}$	$\leqslant-10 \mathrm{dBm}$	$\leqslant 0 \mathrm{dBm}$	$\leqslant+10 \mathrm{dBm}$	
4	$\leqslant-10 \mathrm{dBm}$	$\leqslant 0 \mathrm{dBm}$	$5+10 \mathrm{dBm}$		
5	$\leqslant 0 \mathrm{dBm}$	$\leqslant+10 \mathrm{dBm}$	$\leqslant+20 \mathrm{dBm}$		
6	$\leqslant+10 \mathrm{dBm}$	$\leqslant+20 \mathrm{dBm}$	$\leqslant+30 \mathrm{dBm}$		

A-23. (Continued).
display-update time is eliminated until called for with a Trigger (T) command; another 10 command will also update the display and maintaln the hold indication function; a 00 command will update the display and negate the hold indication function.

A-24. SRO function Syntax. The control-ler can command the instrument to pull the SRO line true after each measurement. The syntax for this command is IV ; to command the instrument not to pull the SRO line true after each measurement the syntax is OV.

A-25. Measurement Trigger Syntax. The Trigger (T) command is an addressed command (wrt Tl6,"T"), used to trigger a measurement, and is generally used in conjunction with the Hold Indication function (Q). (Refer to paragraph B-23.) The instrument is also responsive to the unaddressed Group Execute Trigger (GET) command. This command is asynchronous and may result in a slightly faster response time than the T command, which is executed only once each measurement cycle.

A-26. Limit Service Request. This command, when enabled, will result in a service request by the instrument when either $d B$ limit (high or low) of elther channel (channel 1 or channel 2) is exceeded. The I imit exceeded and the channel can be determined from the service request byte as shown below:

NOTE

Bit 6, when set, is the service request.

8it		Limit Exceeded
7	543210	
$\times 1$	$\times \times \times \times 1$	Channel 1 low Ilmit
$\times 1$	$\times \times \times \times 10$	Channel i high limit
$\times 1$	$x \times 01 \times x$	Channel 2 low limit
$\times 1$	$\mathrm{x} \times 10 \times \mathrm{x}$	Channel 2 hlgh 1 lmit

A-27. Typical Application. Suppose that it is desired to measure insertion loss or galn with an instrument equipped with option 4200-03, channel 2 measures incldent power and channel 1 measures output power. The program, shown below, will request reference conditions and walt for the user to set them up. Following establishment of the reference,
the program will loop on insertion loss/gain measurements. Each measurement is triggered by the user. Zeroing is prompted in the local mode at the beginning of the program. Reading errors, should they occur, will be signalled by a double beep from the calculator; normal measurements will give a single beep. There will be one print line per measurement. The reference value is not printed in this example.

Program Variable Usage:

	$\begin{aligned} & \mathrm{P}:=\text { power mea } \\ & \mathrm{R}:=\text { range va } \end{aligned}$	surement value ue
	s : = status va	
	Z: = dummy in	ut for prompts
Progr	gram Statements	Comments
0: c	cll 7	/clear interface
1:	ent "zero chl, 2",Z	/prompt for zeroling
2: r	rem 7	/enable remote
3:	wrt 716, "INAOR2NAOR3N"	```10 dBref, auto - set ch }```
4:	ent "ref measure",Z	$\begin{aligned} & \text { /prompt to set up } \\ & \text { ref } \end{aligned}$
5: r	$\operatorname{red} 716, \mathrm{P}, \mathrm{S}, \mathrm{R}$	/read ref value, status
6:	If S>0;dsp "error",S; beep; gto 4	/test status
7:	$\begin{aligned} & w r+716, " 1 N ", \\ & P, " R 3 N " \end{aligned}$	/set ch 1 dBref = P
8:	$\begin{aligned} & \text { beep;ent } \\ & \text { "measure", Z } \end{aligned}$	/prompt for measurement
9: \quad	red 716,P,S,R	/read measurement, status
10:	```if S>0; dsp "error",S; beep;walt 100; gto 8```	/test status
	$\begin{aligned} & \text { prt P,"dB"; } \\ & \text { gto } 8 \end{aligned}$	/print measurement
12:	end	


```
A-29. (Continued).
HP85
Controller
RUN
continue
CONTINUE
Comments
The model 4200 will read the generator level of approximately 0 dBm and this will be printed by the model 858; the Model 1020 generator wlll change its level to -10 dBm but the Model 4200 will not change its indication since it is in the hold-Indication mode; program stops a† pause and waits for "CONTINUE" on Model HPS5.
continue
ONTINUE
This issues a T (trigger) command to the Model 4200 which now changes to approximately - 10 d8m; this is printed by the Model HP85.
This initiates a sequence in which the measurement-completeSRQ is enabled.
This initiates a sequence in which the measurement-completeSRO has been disabled.
```

A-30. Model 4200 Device Dependent Statement Summary. Refer to Table A-5.

A-31. Sealed System Operation. When in sealed system operation (selected by the control board bit switch) the instrument will power up in the oderate mode but, by the use of the proper GPIB commands this instrument can be placed in the DC or AC modes to allow calibration of the instrument over the bus without removal from the system rack. The GP18 commands are:

Operate Mode	
Callbrate Mode 1 (DC Cal)	$" 81 \mathrm{m"}$
Calibrate Mode 2 (AC Cal)	$" 82 \mathrm{~m} "$

A-32. THEORY OF OPERATION.

A-33. General. Interface board A23 is a microprocessor-driven data interface which converts IEEE 488 bus compatible signals into control codes that operate the internal control bus of the instrument. It also converts instrument cara into IEEE 488 compatible signals for use on the bus. All data transters are handlec by source and acceptor handshake protocols as defined by । EEE-488-1978.

A-34. Detalled Description. Refer to Figure A-1. All data manipulation and IEEE 488 bus management are controlled by CPU A5IC3 on the instrument control board in conjunction with a micro-program stored in PROM A23U: on the Interface board. All data transfer is handled in parallel-to-parallel mode by adaoter A2314. Latch A23U5 nandles transfer ot bit switch data that deflnes the instrument address and message termination charactors to the instrument data bus.

Bi-directional buffers A23U6 and A23U7 handle data and control signal transfers, respectively, between adapter A23U4 and the interface buses.

A-35. When the Instrument is turned on, the RESET IIne to adapter A23U4 is set low while capacitor A23Cl charges through pull-up network A23U1, thereby clearing the adapter. To
initiate an interface transaction, signal ROM-if is set low by CPU A5IC3, thereby enabiling the output of PROM A23U1. Interface micro-program instructions from the PROM memory location specified by the address bits from the CPU are written onto the instrument data bus. The CPU executes these instructions and activates the control signals required to perform the commanded interface transaction.

A-36. Instrument address and message termination character data manually preset into bit switch A23S1 is suoplied to latch A23U5. To read the switch data, control signals RD and CSIF and address bit A6 are activated, thereby enabling the latch output through gates A23U2c and A23U2b and inverter A23U3c. The switch data is then transferred through the latch to the instrument data bus.

A-37. To read incoming interface control sianals, the CPU activates signals $\overline{R D}$ and
CSIF and sets address bit A6 low. The interface control signal port of adapter A23U4 is selected through address bits AO, A1 and A5. Adapter A23U4 is enabled through gate A23U2a. Because signal $\overline{R D}$ is active, signal TE supplied by the adapter to buffer A23U7 is Inactive, and this buffer is sat up for data transfer from the interface control signal bus to the control signal port of adapter A23U4. Incoming interface control signals are transferred through buffer A23U7 and adapter A23U4 to the instrument data bus. Clocking of adapter operations is controlled by the clock signal from the instrument control board. Interface control signal transfer in the opposite direction is ach ieved by reversing the states of signals $\overline{R D}$ and $\overline{W R}$. An active $W R$ causes signal $T E$ to buffer A23U7 to become active, thereby reversing the direction of data flow through the buffer. Interface control signals from the instrument data bus are then written onto the interface control bus through adapter A23U4 and buffer A23U7. Interface control signals are defined as follows:

DAV	DATA VALID
NRFD	NOT READY FOR DATA
NDAC	NOT DATA ACCEPTED
ATN	ATTENTION
IFC	INTERFACE CLEAR
REN	REMOTE ENABLE
SRQ	SERVICE REQUEST
EOI	END OR IDENTIFY

TABLE A-5. MODEL 4200 DEVICE DEPENDENT* STATEMENT SUMMARY			
Statement	Description	Statement	Description
	Trigger a measurement Enable data averaging Disable data averaging Recall state of J to display (0 or 1) Disable dB-limit-exceeded service request Enable dB-limit-exceeded service request Recall state of U to display (0 or 1) Disable service request at measurement completion Enable service request at measurement completion Recall state of V to disolay (0 or 1) Disable display indication hold Enable display Indication hold Disolay measurement in power Display measurement in dB Enable autorange mode Enable hold-range mode Enter N as high dB IImit $(N=-99.99$ to +99.99$)$ Recall low dB IImIt Enter N as high dB limit ($N=-99.99$ to +99.99)	(N) O D (N) F F (N)S S (M)N N (N) R R z K C (NM)Y (N) G	Recall high dB limit Enter N as CAL FACTOR in dB ($N=-3.00$ to +3.00) Recall CAL FACTOR in dB Enter N as frequency as CAL FACTOR GHz determination ($N=0.1$ to 999.9) Recall frequency for CAL FACTOR GHz determination Enter N as sensor number ($N=1$ through 8) Recall sensor number Enter in as channel number ($M=1$ through 3) Reca\|l channel number Enter N as dB reference level ($N=-99.99$ to +99.99) Recall dB reference level Initiate automatic zeroing cycle Perform 1 mW automatic callbration Clear numeric entry to 0 Zero ranges N through M ($N=0$ through 6; $M=0$ through 6; both must be used) Set instrument to range N ($N=0$ through 6)
*All oth	mands are controller depend	control	nstruction manual.

Figure A-1. IEEE-488 Bus Interface Option 4200-01A Block Dhagram

A-38. To handle data transfers between the instrument data bus and the intertace data bus, adapter A23U4 is similarly enabled through gate A23U2a by control signal CSIF and a low address bit AG. Address bits AO, Al and A5 are set to select the data port of adapter A23U4 and signals WR and $\overline{R D}$ specity the write and read functions. If data is to be written onto the interface data bus, signal \bar{W} is activated, thereby activating signal TE to buffer A23U6. Data on the instrument data bus is then transferred through adaoter A23U4 and buffer A23U6 to the interface data bus. For data transters from the interface data bus to the instrument data bus, signal $W R$ is inactive and signal $\overline{R D}$ is active. Signal TE to buffer A2zU6 is deactivated by adaoter A23U4 to reverse the direction of data transfer through the buffer.

A-39. MAINTENANCE.

A-40. General. The Interface board does not operate alone, but rather in conjunction with the Model 4200. If Interface operation becomes abnormal it should first be determined if the 4200 operates normally without the interface. If it does, proceed according to the following paragraphs.

A-41. Physical inspection. Check the interface board visually for loose or broken connectors, foreign materlal, etc.

A-42. Voltage Checks. With the board installed in the 4200, and all connectors in place, check the supply-and-iC-valtages according to the values shown on the schematic diagram, Figure A-2.

A-43. Active-Device Substitution. All the active devices are socketed, making replacement simple. Replace each device, one at a time, and check for restoration of proper performance by the instrument.

A-44. Troubleshooting. An ascilloscope, while not the most useful tool for troubleshooting bus-orlented microprocessor systems, stlll may be used to determine activity or lack of activity on the address, data and control lines.

A-45. REPLACEABLE PARTS.

A-46. Table 6-2 lists all the replaceable parts and includes; Reference Symbol, Description, Mfr., Mtr's Part No., and the BEC Part No.

A-47. SCHEMATICS.

A-48. Refer to figure $A 2$ for the 4200-01A schematic.

D8312530

Figure A-2 Interface Board A23, Schematic Diagram

APPENDIX 8

IEEE-488 BUS INTERFACE
 OPTION 4200-018

8-2. The IEEE-488 (GPIB) bus interface option permits external control of the instrument and data capture by a wide varlety af compatible controllers. The instruent devices to achleve speciflc test automation goals, with no speciallzed control interface requirements for proper electrical operation.

B-3. Although no standard GPIB Interface data formats have yet been establlshed, certain common practices are achleving de-facto standard status. These practices have been adhered to In the deslgn of the $4200-018$ thereby assuring the user of format com, patiblilty with almost all controllers.

B-4. CAPABILITY.
B-5. Certain subsets of full GPIB functions
are speclfled in the IEEE-488 1978 Standard.
The Model 4200-018 option includes the
following capabilitles:
SHI SOURCE HANDSHAKE complete capabillty
AHI ACCEPTOR HANDSHAKE complete capabillty
T6 BASIC TALKER, SERIAL POLL, UNADDRESS IF MLA, NO TALKER ONLY capability

TEO NO EXTENDED TALKER capability
L4 BASIC LISTENER, UNADDRESS IF MTA, NO LISTENER ONLY capablllty

LEO NO EXTENDED LISTENER capabllity
SRI SERVICE REQUEST capability
RLI REMOTE-LOCAL capabllity,

PPO NO PARALLEL POLL capability
DCO NO DEVICE CLEAR capablility
DT1 DEVICE TRIGGER capability
CO NO CONTROLLER capabllity

$$
\begin{aligned}
& \text { MLA }=\text { My Llsten Address } \\
& \text { MTA }=\text { My Talk Address }
\end{aligned}
$$

B-6. INSTALLATION.
8-7. Option 4200-01B consists of interface
board A23. Electrical interconnections are shown in Figure 7-8. To install the inter-
face board, proceed as follows:
a. Turn off power to the instrument.
b. Remove the screws that secure the top cover back and of f.
c. Cut the cable tie in the instrument that holds the extra power plug (the plug with two blue wires and one black wire).
d. Remove the six screws that fasten the control board and replace them with the six mounting posts supplled with the - DiB package.
e. Position the interface board in the
instrument so that the mounting holes in the interface board I ine up with the mounting posts in the instrument. Attach the interface board to the mounting posts with six 4-40 screws and lockwashers supplied with the Interface board.
f. Connect the 40 pin ribbon connector to the front edge connector of the interface board.
g. Connect the power plug in the instrument to the 4-pin brown connector on the interface board.

B-8. OPERATION.

B-9. Address Assignment. Before using the instrument in the GPIB, it must be assigned a unique address. This address is set using the five right-most sections of rear-panel address switch Si in accordance with Table B-1.

B-10. Message Terminator. Positions 6 and 7 of the rear panel switch Si permit a cholce of message terminators, as shown in Table B-2.

B-i1. Command Response. In addition to Talk and Listen Address commands, the instrument responds to the following:
a. Address Commands (Response If Listen Addressed).

Mnemonic	Name	Function
GTL	Go To Local	Enables panel control
GET	Group Execute Trigger	Trigger a measurement

b. Listen Address Group.

Mnemonic	Name	Function
UNL	Unlisten	De-address as
	IIstener	

c. Talk Address Group.

Mnemonic	Name	Function
UNT	Untalk	De-address as talker

TABLE 8-1.		ADDRESS ASSIGNMENT					
*Decimal Address	Talk Code	Listen Code	Sw 5	+ 4	3	++	ing 1
0	e	SP	0	0	0	0	0
1	A	!	0	0	0	0	1
2	8	"	0	0	0	1	0
3	C	\#	0	0	0	1	1
4	0	\$	0	0	1	0	0
5	E	$\%$	0	0	1	0	1
6	F	8	0	0	1	1	0
7	G	'	0	0	1	1	1
8	H	6	0	1	0	0	0
9	1)	0	1	0	0	1
10	J	*	0	1	0	1	0
11	K	+	0	1	0	1	1
12	L	,	0	1	1	0	0
13	M	-	0	1	1	0	1
14	M	-	0	1	1	1	0
15	N	1	0	1	1	1	1
16	0	0	1	0	0	0	0
17	P	1	1	0	0	0	1
18	Q	2	1	0	0	1	0
19	R	3	1	0	0	1	1
20	s	4	1	0	1	0	0
21	T	5	1	0	1	0	1
22	U	6	1	0	1	1	0
23	v	7	1	0	1	1	1
24	x	8	1	1	0	0	0
25	Y	9	1	1	0	0	1
27	1	,	1	1	0	1	1
28	V	$<$	1	1	1	0	0
29	1	=	1	1	1	0	1
30	Λ	>	1	1		1	0
*Address 31 (111111) wlll not be recognized and should not be used.							

MESSAGE-TERMINATOR SELECTION		
Switch		Message Terminator
7	6	EOI
0	0	$C R^{*}$
0	1	LF
1	0	CR LF*
1	1	
${ }^{*}$ WIth or without EOI		

8-11. (Continued).
d. Unencoded Commands.

Mnemonic	Name	Function
IFC	Interface Clear	Initialize Intertace
REN	Remote Enable	Permits remote operation

B-12. Operating States. The instrument operates in two separate states, whether in local or remote control. One state is the measurement state, during which the Instrument performs and displays measurements; the other state is the data entry/recall state, which is operative durling number entry or after recall of stored information. When operating on the bus, it is important to remember that the instrument can send only that intormation which appears on the front panel display. When the instrument is in the store or recall mode, the LED display and annunciators bllank on and off to ind late that the displayed value is not a measured value.
a. Measurement Mode Functions. The following functions change the measurement mode of the instrument:

Keyname	GPIB	Function
PWR MODE	P	Displays measured voltage
dB MODE	B	Displays measured dBmV

b. Command Functions. Table 8-3 describes command functions.

Keyname	GPIB	Function
dB CAL FAC	0	Cal factor Constant, In dB
RANGE AUTO	A	Sets autorange mode
RANGE HOLD	0	Sets range hold mode

TABLE B-3. COMmand functions			
Command	Arm	Disarm	Descriotion
\bigcirc	10	00	Hold command: the last reading, or the last keyboard entry, wlll remain on the display. The instrument will continue to read probe inout, but will not update the display. The instrument cycle time will be greatly reduced because of the measurement-cycle overhead that is not executed during the hold command.
v	IV	OV	Service request command: the service request will be issued by the instrument upon completion of a measurement.
	2 V		SRQ on settled reading
J	1 J	0 J	Raw-tata command: the instrument will not average or smooth any of the measurements.
U	U	OU	Limit command: the instrument will issue a service request if any limit is exceeded. If a limit is exceeded and a servica request is Issued, the U command must be rearmed to become operational again.
T			Trigger command: this command, identical with the IEEE-488 group execute trigger, initiates a measurement cycle.
INTERFACE CLEAR and DEVICE disarm all the above commands.			

8-12. (Continued).
b. Command Functions. (Continued).

Keyname	GP18	Function
GHz	F	Interpolates Freq/Cal Factor Table
SEL AVERAGEOX	Sets auto average Sets select average $(n=1-127)$	

c. Service Request Status Codes. Service request status is defined by a five-bit code, as defined in Table B-4.

d. Data Entry/Recall Functions. These functions enable entry or retrieval of numeric constants used by the instrument. Operation reverts to the measuring state after data storage.

Keyname	GP18	Function
LIMITS d8 LO	L	Low limit value in dB
LIM!TS dB HI	H	High limit value in $d B$
$\begin{aligned} & \text { SELECT } \\ & \text { CHNL } \end{aligned}$	N	Selects channel number
dB REF LEVEL dB	R	dB reference level for dB modes
SENS	5	Selects Sensor Data Tables
e. Speclal Include the tions.	Funct autom	ons. Special functions tic zeroing and clear func-
Keyname	GP P ${ }^{\text {P }}$	Function
ZERO	2	Inltiate an automatic zeroling cycle
CLR	C	Clear numeric entry to zero
CAL	K	Performs 1 mw Auto Calibration

B-12. (Continued).
f. IEEE-488 Bus Command Extensions. The following functions are added to bus operation:

Name	GPIB	Function
ADR.ZERO	Y	Zero selected ranges $(0-7)$
SET RANGE	G	Set to selected range $(0-7)$

These commands must be preceded by an appropriate argument. The argument for Y is the span of ranges to be zeroed; for example: $26 Y$ specifles zeroing of ranges 2 through 6. If only one range is to be zeroed, the argument must begin and end with the same code (e.g.. liy to zero only range i). The argument for G is the range number $(0=10 \mathrm{nW}$ to 6 $=10 \mathrm{nW}$ for 4200-4 sensors) to be set. From execution of the Y command to measurement mode, the maximum time is as follows:

Command	Time	Command	Time
OOY	2.3 seconds	04Y	3.8 seconds
$01 Y$	2.9 seconds	05Y	4.0 seconds
$02 Y$	3.3 seconds	06Y	4.3 seconds
$03 Y$	3.5 seconds		

The "Y" command allows no walt time for a sensor to reach a stable zero before actual offset storage occurs.

NOTE

The G command sets the 4200 to an Internal range whlch may not correspond to the range code output in the data string in Paragraph 8-21. The table below relates internal and apparent range codes:

LEVEL		INTERNAL	APPARENT
$+10 \mathrm{~dB}$	10 mW	-	-
		6	
$\begin{aligned} & +6 d B \\ & 0 d B \end{aligned}$	3.98 mW	-	
	1 mW		6 -
		5	
$\begin{aligned} & -10 \mathrm{~dB} \\ & -11 \mathrm{~dB} \end{aligned}$	$100 \mu \mathrm{~W}$		- 5 -
	$79.4 \mu \mathrm{~W}$	W	
		4	
$\begin{aligned} & -20 \mathrm{~dB} \\ & -21 \mathrm{~dB} \end{aligned}$	$10 \mu \mathrm{~W}$		- 4 -
	$7.94 \mathrm{\mu W}$	W	
		3	
$\begin{aligned} & -30 \mathrm{~dB} \\ & -32 \mathrm{~dB} \end{aligned}$	$1{ }^{1 \mu W}$		- 3 -
	631 nW	-	
		2	
-40 dB	100 nW		- 2 -
-42dB	63.1 nW	-	-
		1	
$-50 \mathrm{~dB}$ $-52 \mathrm{~dB}$ $-60 \mathrm{~dB}$	10 niv		- 10
	6.31 nW	-	\downarrow
	1 nW	0	-
		\downarrow	

For the series 4 and 5 sensors add 10 dB to the internal and apparent levels.

For the series 6 sensor add 20 dB to the internal and apparent levels.
g. Bus Avaliabillty. When the Model 4200

Is sent a string, it does not normally tie up the bus whlle responding to the string; other bus communications are possible during the Interval. The 4200 can inform the controller when it is finished by use of the Service Request see paragrpah B-12d, if this ls desired.

The Model 4200 can, however, be made to lock up the bus whlle it is responding to a string - if such action is desired - by sending it two strings in succession (even if the second string is only a Null command).

Example: A "zero" command: wrt 716,"Z"
Followed by a "talk" command: red 716,A,B,C
8-13. TIME RESPONSE CHART.
Refer to Tables 1-3 for the Model 4200 sensor measurement through the lEEE-488 Bus.

B-14. REMOTE PROGRAMMING.

NOTE

It is assumed that the user is acqualnted with GPIB principles and terminology. Refer to the controller instruction manual for the syntax needed to create specific bus commands and addressing sequences. All examples given apply to the HP 9825 calculator.

B-15. Bus Programming Syntax. The bus programming syntax mirrors the front-panel keystroke sequence closely. Each key has been assigned an alphanumeric character and sending that character is equivalent to pressing that front-panel key. The resulting operation is indistingulshable from local control. Numerical values are translated by the GPIB interface so that commonly observed formats may be used. Fixed formats and floating polnt formats may both be used. These representations are converted to their equivalent fixed point values and the sign information is post-flyed automatically, thereby ensurling that natural notations for numbers will be accepted by the instrument.

B-16. Suppose that it is desired to set the instrument to the PWR mode. The HP 9825 calculator could be programmed:
wrt 716, "P"

The "wrt" instructs the calculator to send data on the bus to one or more listeners. The number following is the address information; 7 is the calculator address and 16 is the instrument address. (all examples in this appendix wlll use 16 as the instrument address, although any valld address can be assigned to the instrument.) When the calculator Interprets the first part of the line, it will assert the ATN Iline to signify that commands or addresses will be sent on the bus. Followlng that, it will send three

B-16. (Continued).

bytes or characters: Unllsten, the calculator Talk Address and the Instrument Listen Address. This information will conflgure both the calculator and the instrument for the data transfer. After the last command byte has been accepted, ATN will be released to the false state by the calculator. All information on the bus is interpreted as data In this mode. While in the data mode, the calculator will send the character "P" to the instrument. At the instrument, this will be interpreted as equivalent to pressing the MODE PWR key and that function will be executed. Because there is no more data to be sent, the calculator will send a delimiter (the preselected ASCII code for the termination character). The Instrument recognizes the termination character as an end-ot-message signal and returns to the bus lde condition.

8-17. The preceding discussion of the sending of a single programming byte serves to illustrate two important points: every data transfer is preceded by a command/address preamble and each transfer is terminated by a termination character. In the preceding examole, six characters were sent on the bus; only one was a programming byte.
$B-18$. The measurement mode functions $(P, B$, A, O) and the special functions (Z, K) do not expect any numerlc value. These functions all execute as recelved. For example: the following will program $d B$ and autorange mode:

$$
\begin{aligned}
& \text { wrt 716, "BA" } \\
& \text { or } \\
& \text { wrt } 716 \text {, "AB" }
\end{aligned}
$$

Note that the sequence is un Important, except that each function executes in the order it is received on the bus.

8-19. Suppose that the Instrument is to be zeroed automatically, and then asked to send the reading in the PWR and RANGE AUTO mode. The HP 9825 calculator could be instructed as follows:

$$
\begin{aligned}
& \text { wrt } 716 \text {, "APZ" } \\
& \text { red } 716, v, \mathrm{~S}
\end{aligned}
$$

The automatic zeroing cycle time is approximately 10 to 22 seconds, depend-ing on range. Until zeroing is com-pleted, the Instrument will be unable to respond with new data. The first ilne of the preceding instructions sets the operating mode and initiates the zeroing cycle. The last lline reads the response from the instrument. The Instrument response consists of two numeric values: the first value Is the front panel reading and the second is a status value (normally zero). These two numbers will be stored in the calculator varlables (storage locations) V and S. Note that each data transmission from the instru-
ment consists of two values. When the status value is non-zero, indicating an error condition, the data value wlll be set to zero. The program will normally test the status value to assure valld operating conditions.

8-20. Store/Recall Functions Syntax. The general syntax for store/recall functions is the same as the front panel sequence; if a numeric value Immediately precedes the function, that value will be stored; otherwise, the existing stored value wlll be recalled to the front panel. These functions (L, H, D, F, S, N, R, J, U, V) thus operate in a dual mode. When the instrument is in the store or recall mode the display will blink to indicate that the instrument is not in the measurement mode. The instrument is returned to the measurement mode by sending any of the following: $P, B, A, 0, T, 1 \mathrm{~J}, 0 \mathrm{~J}, 1 \mathrm{Q}, 0 \mathrm{Q}$, iv, ov, iU or OU.

B-21. Suppose that it is desired to store the current power level in dBm into the d8m reference so that all future readings will be referenced to the current value. Allowance must be made for the possibility that the current value is a dB relative value. To do this, the current ob value must be read, the existing dB reference must be recalled, the true dBm value must be computed and this value must be stored into dB reference. The calculator could be instructed as follows:

$$
\begin{aligned}
& \text { red } 716, V, S \\
& \text { wrt } 716, \text { "R" } \\
& \text { red } 716, X, S \\
& v+X \rightarrow Y \\
& \text { wrt } 716, Y, ~ " R "
\end{aligned}
$$

Note that R is used twice in the program, the first time to obtaln the existing value for the dB reference and the second time to store the computed value. Also, note that the two read statements (red) each fetch a different value, the first value is the power value in dB and the second is the dB reference.

8-22. Output Data Format. The data output of the instrument consists of two numeric values. The first is the numeric data in the display and the second is the status information. The normal data output will have the following format:

```
abcsddddEsd, S, R (te)
```

Where:

$a b=$	mode (power in milliwatts $=P W ;$
	$d B=D M ; d B r=D R)$
$c=$	channel $(A=1 ; B=2 ; C=3)$
$s=$	sign (+ or -)
dddd $=$	data (four digits, each digit
	$0-9)$
Esd $=$	exponent, sign, digit
$=$	data delimiter

$a b=$ mode (power in milliwatts $=P W$;
$d B=D M ; d B r=D R)$
$c=$ channel $(A=1 ; B=2 ; C=3)$
s $=\operatorname{sign}(+$ or -)
(four digits, each digit
n, diglt
, = data dellmiter

TABLE B-4. RANGE CODES FOR VARIOUS SENSORS					
Range $\operatorname{Cod} \theta$	Sensor Type				
	4200-4E	4200-5E	4200-6E	4200-7E	4200-8E
0	<-50 dBm	$\leqslant-40 \mathrm{dBm}$	$\leqslant-30 \mathrm{dBm}$	$\leqslant-20 \mathrm{dBm}$	$\leqslant-10 \mathrm{dBm}$
,	<-40 d8m	$\leqslant-30 \mathrm{dBm}$	$\leqslant-20 \mathrm{dBm}$	$\leqslant-10 \mathrm{dBm}$	< 0 dBm
2	<-30 d8m	$\leqslant-20 \mathrm{dBm}$	$\leqslant-10 \mathrm{dBm}$	$\leqslant 0 \mathrm{dBm}$	
3	<-20 d8m	$\leqslant-10 \mathrm{dBm}$	$\leqslant 0 \mathrm{dBm}$	< +10 dBm	
4	<-10 dBm	$\leqslant 0 \mathrm{dBm}$	$\leqslant+10 \mathrm{dBm}$		
5	$\leqslant \quad 0 \mathrm{dBm}$	$\leqslant+10 \mathrm{dBm}$	$\leqslant+20 \mathrm{dBm}$		
6	< +10 dBm	$\leqslant+20 \mathrm{dBm}$	$\leqslant+30 \mathrm{dEm}$		

B-22. (Contlnued).

$$
\begin{aligned}
& S= \text { status digit: } \\
& 0= \text { no error } \\
& 1= \text { entry too small } \\
& 2= \text { entry too large } \\
& 3= \text { measurement under range } \\
& 4= \text { measurement over range } \\
& 5= \text { zero acquisitlon out of } \\
& \text { range - excessive positive } \\
& 6= \text { zero acquisition out of } \\
& \text { range - excessive positive } \\
& \text { offset } \\
& 7= \text { channel } 3 \text { over/under range } \\
& R= \text { Range Code, coded per Table B-4 } \\
& t_{c=}= \text { termination character }
\end{aligned}
$$

B-23. Hold Indication function Syntax. The Hold Indication function, when enabled (1Q), automatically does a measurement cycle following its recelpt and then holds the Indication untll recelpt of a $T, 00$ or another 10 command. It is intended primarily for use with the Trigger or Group Execute Tr liger commands. Following its recelpt, the instrument continues to measure but does not update the display. This can be use-ful where response time is important since display-update time is eliminated until called for with a Trigger (T) command; another 10 command will also update the display and malntain the hold Indication function; a 00 command will update the display and negate the hold indication function.

B-24. SRQ Function Syntax. The controller can command the instrument to pull the SRQ I ine true after each measurement. The syntax for this command is is and 2 S . To command the instrument not to pull the SRQ line true after each measurement the syntax is $0 S$. To command the instrument to pull the SRQ I ine true after each settled reading the syntax is 25.

8-25. Measurement Trigger Syntax. The Trigger (T) command is an addressed command (wrt T16,"T"), used to trigger a measurement, and is generally used in conjunction with the Hold Indication function (Q). (Refer to paragraph B-23.) The instrument is also responsive to the unaddressed Group Execute Trigger (GET) command. This command is asynchronous and may result in a silghtly
faster response time than the T command, which is executed only once each measurement cycle.

B-26. Limit Service Request. This command, when enabled, will result in a service request by the instrument when elther dB limit (high or low) of either channel (channel 1 or channel 2) is exceeded. The I imit exceeded and the channel can be determined from the service request byte as shown below:

NOTE

Bit 6, when set, is the service request.

Bit		Limit Exceeded
	6543210	
	$1 \times \times \times \times 1$	Channel 1 low limit
	$1 \times \times \times \times 10$	Channel 1 high limit
X	$1 \times \times 01 \times x$	Channel 2 low limit
	$1 \times \times 10 \times \times$	Channel 2 high limit

B-27. Average Function Selection. To reduce the effects of noise, spurlous components, etc. at lower levels, the Model 4200 employs signal averaging. The amount of averaging is a function of signal level, beling highest on the lowest ranges and least on the highest ranges. When the instrument is first turned on a set of default values Is assigned as follows:

fs LEVEL	RANGE	CONSTANT
10 mW	6	1
1 mW	5	1
$100 \mu \mathrm{WW}$	4	1
$10 \mu \mathrm{WW}$	3	2
$1 \mu \mathrm{WW}$	2	4
100 nW	1	20
10 nW	0	80

B-28. Increasing or decreasing these values may be accomplished by sending the instrument $N(N=1$ to 127$)$ and then X. This new constant will now be in effect on all ranges and will remain in effect until changed by entering a different value, or until ox is sent to the instrument, or the instrument is turned OFF/ON, after which the default values wlll be again be in effect. The value of the constant in effect can be recalled by sending the instrument X. The default values when in the AUTO mode cannot be recalled, the instrument will return a 0 to indicate the aUTO mode.

HP85

Controller	Comments
RUN	The model 4200 will read the generator level of approximately 0 dBm and this will be printed by the model 858; the Model 1020 generator will change its level to -10 dBm but the Model 4200 will not change its indication since it is in the hold-indication mode; program stops at pause and waits for "CONTINUE" on Model HP85.
continue	This issues a T (trigger) command to the Model 4200 which now changes to approximately -10 dBm ; this is printed by the Model HP85.
continue	This initlates a sequence in which the measurement-completeSRQ is enabled.
continue	This initlates a sequence in which the measurement-completeSRQ has been disabled.

B-32. Model 4200 Device Dependent Statement Summary. Refer to Table 8-5.

A-33. Sealed System Operation, When in sealed system operation (selected by the control board bit switch) the instrument wlll power up in the operate mode but, by the use of the proper GPIB commands this instrument can be placed in the DC or AC modes to allow calibration of the instrument over the bus without removal from the system rack. The GPIB commands are:

Operate Mode	" $80 \mathrm{m"}$
Callbrate Mode 1 (DC Cal)	$" 8 \mathrm{~m} "$
Callbrate Mode 2 (AC Cal)	$" 82 \mathrm{~m} "$

B-34. THEORY OF OPERATION.
B-35. General. Interface board A23 is a microprocessor-drlven data interface which converts IEEE 488 bus compatible signals into control codes that operate the internal control bus of the instrument. It also converts instrument data into IEEE 488 compatible signals for use on the bus. All data transfers are handed by source and acceptor protocols deflned by IEEE-488-1978.

B-36. Detailed Description. Refer to Figure B-1. All data manipulation and IEEE-488 bus management are controlled by CPU A23U7 in conjunction with a micro-program stored in PROM A23U8. All data transfer is handed in parallel to parallel mode by adapter A23U16. Latch A23U15 handes transfer of bit swltch data that deflnes the instrument address and message termination characters to the instrument data bus. Bi-directional buffers A23U17 and A23U18 handle data and control signal transfers, respectively, between adapter A23116 and the interface buses. The Ram memory A23U11 is used by the CFU for temporary storage of program varlabies during

Figure 8-1. IEEE-488 Bus Interface Option 4200-018 Block Diagram

8-36. (Continued).
program execution. A23U14 the program timer Is only used by the -06 MATE option for timing required under CIIL operation. A23U1 and A23U2 the programmable peripheral interfaces form a "mallbox" for data transfer between the instrument and interface address, contral, and data buses.

B-37. When the instrument is turned on, or when the supply voltage goes low, the supply voltage supervisor A23U5 keeps the reset ilne active until the power supply voltage haas reached its nominal voltage value, thereby resetting the CPU A23U7 and clearing the adapter A23Ui6.

8-38. Instrument address and message termination character data that is preset by blt switch A23S1 is supplied to latch A23U15. To read the switch data, address bits AB4, $A B 5$, and contral signal TORD are activated producing slgnal $\overline{B S W}$ and enabling the latch output. The switch data is then transferred through the latch to the interface data bus.

B-39. To read incoming Interface control slgnals, the CPU activates signals TORD and sets address bit AB4 low. The interface control signal port of adapter A23U16 is selected through address bits ABO, ABi, and AB2. Adapter A23ui6 is enabled through decoder A23U12. Because signal TORD is active, signal TE supplied by the adapter to buffer A23Ui8 is inactive and this buffer is set up for data transfer from the interface control signal bus to the control signal port of adapter A23U16. Incoming interface control signals are transferred through buffer A23U18 and adapter A23U16 to the instrument data bus. Clocking of adapter
operations is controlled by the clock signal ZCLK which is generated by $A 23$ U4b and divided by A23U6. ZCLK also supplles the required clock to the CPU A23U7. Interface contral slgnal transter in the opposite direction is achleved by reversing the states of signals lORD and lowR. An active loWR causes signal TE to buffer A23uis to become actlve, thereby reversing the direction of data flow through the buffer. Interface control signals from the interface data bus are then written onto the Interface control bus through adapter A23U16 and buffer A23U18.

8-40. To handle data transfers between the Interface data bus and the interface connector A23J2, adapter A23U16 is similarly enabled through decoder A23U12 by low address blt AB4. Address bits AO, Ai, and A2 are set to select the data port of adapter A23Ui6, and signals TOWR and TORD specity the write and read functions. If data is to be written to the Interface connector A 23 J 2 signal TOWR is activated, thereby activating signal $T E$ to buffer to buffer A23U17. Data on the Interface data bus is then transferred through adaoter A23U16 and buifer A23U17 to connector A23J2. For data transfers from connector A23J2 to the interface data bus, signal IORD Is Inactive and signal TORD is active. Signal TE to buffer A23U17 is deactivated by adapter A23U16 to reverse the direction of data transfer through the buffer.

8-41. MAINTENANCE.

B-42. General. The interface board does not operate alone, but rather in conjunction with the Model 4200. If interface operation becomes abnormal it should first be determined if the 4200 operates normally without the interface. If it does, proceed according to the following paragraphs.

B-43. Physical Inspection. Check the interface board visually for loose or broken connectors, unseated $\mid C ' s, f o r e i g n ~ m a t e r i a l, ~$ etc.

B-44. Voltage Checks. With the board Installed in the 4200, and all connectors in place, check the supply - and IC - voltages according to the values shown on the schematic diagrams, Figures $\mathrm{B}-2, \mathrm{~B}-3$, and $\mathrm{B}-4$.

B-45. Active-Device Substitution. All the actlve devices are socketed, making replacement simple. Replace each device, one at a time, and check for restoration of proper performance by the instrument.

B-46. Troubleshooting. An oscilloscope, while not the most useful tool for troubleshooting bus-orlented microprocessor systems, still may be used to determine actlvity or lack of activity on the address, data and control lines.

8-47. REPLACEABLE PARTS.
B-48. Table 6-2 ilsts all the replaceable parts and includes; Reference Symbol,
Description, Mfr., Mfr's Part No., and the BEC Part No.

B-49. SCHEMATICS.
B-50. Refer to Figures B2, B3, and 84 for the schematics for the 4200-01B Option.

NOTES:

1. CAPACITOR VALUES in UF UNLESS OTHERWISE SPEGIFIED
2. RESISTANCE VALUES IN OHMS UNLESS OTHERWISE SPEC.
3. USE JUMPER "A" WHEN UII IS A 2 K ROM USE JUMPER " B " WHEN UII IS A $8 K$ ROM
4. LAST NUMBER USED: RS, C12, U18, J4

NUMRERS NOT USED: R5, RG, R7; C4, C5; LIB.

SCHEMATIC. MATE INTERFACE 83145902 A

C-1. DESCRIPTION.

C-2. Option 4200-03 provides an additional measurement channel (channel 2) that is completely similar to channel 1 except for mounting and input connector location. The input channel 2 connector for this channel is mounted on the rear panel of the instrument. With this option installed, measurements may be made on each channel individually, or both channels can be monitored automatically and the difference in d8 displayed. This option consists of an input module, complete with chopper, that connects to the 40 IIne bus and has its own power connector. Connections are shown in Flgure 7-8.

C-3. installation and removal.

C-4. To Install and remove the Input Channel 2 Option, proceed as follows:
a. Turn the instrument bottom up. Remove the screws that secure the bottom cover and slide the bottom cover back and off.
b. Install the rear input connector at the left side of the rear panel.
c. Dress the cable from the rear input connector down the left slde trame of the instrument (as viewed from the bottom of the Instrument) and across the front sub panel. The cable wlli run below the module beling Installed.
d. Secure the cable grounding lug under the uppermost, right-most binder-head screw (6-32) In the front sub-panel.
e. Install the channel 2 Input module and secure it to the side frames of the instrument with the four screws supplled.
f. Remove the four corner screws that secure the channel 2 input module cover and remove the cover.
g. Plug the chopper into the channel 2 input module, seating the chopper firmly.
h. Connect the 40 pin ribbon cable connector to the front edge connector of the channel 2 Input module.

1. Connect the power cable supplled to the power supply (position 8) with the black lead on the right side (as viewed from the bottom of the instrument), and to the input module (rear) with the black lead on the right.

NOTE

Avold reversal of the two ends of this cable; there is lead transpositlon.
J. Install the channel 2 input module cover that was removed in step g.
k. Install the side covers and the bottom cover removed in steps a and b.

1. To remove the channel 2 input module, reverse the above procedure.

C-5. OPERATION.

C-6. When option 4200-03 is installed, each of the two input channels may be operated with any of up to eight sensors. Channel and sensor data entered through the keyboard are selected as a set; that is, once a channel selection followed by a sensor selection has been made, subsequent selectlon of that channel causes selection of that sensor automatically. Subsequent selection of that sensor through the keyboard, nowever, does not cause automatic selectlon of that channel. Sensor assignment to a particular channel can be changed at any time by selecting the channel through the keyboard, then making another sensor selection through the keyboard.

C-7. Channel 1 and channel 2 operating procedures are basically the same as those described in Section 11 of this manual. channel 3 mode of operation may also be selected. In channel 3 mode, the input levels to channels 1 and 2 are both monltored, and the difference between the two inputs, in dB only, is displayed on the instrument LED disolay. The following parameters selected for channels 1 and 2 prior to selection of the channel 3 mode remaln operative for channel 3 mode operation:
a. Autoranging or range hold (for each channel).
b. Limits (for each channel).
c. $d B$ reference levels (for each channel).
d. Sensor selection.

- Zerolng.
f. Callbration.

C-8. When channel 3 mode has been selected, the following keys are inactive:
a. ZERO.
b. CAL.
c. MODE PWR.
d. MODE dB (automatically in this mode).
e. dB LIMITS LO and dB LIMITS HI.
f. dB REF LEVEL dB.
g. CAL FACTOR dB.

In channel 3 mode, the instrument does respond to a CAL FACTOR GHz key command, applying the stored callbration factor for each selected sensor for that frequency.
(Refer to Tables 5-19, 5-20, 5-21 and 5-22.)
For a description of recorder output in the Channel-3 mode, see page 3-13, paragraph 3-33c.

C-9. MAINTENANCE.

C-10. The procedures used to lsolate malfunctlons to the channel 2 Input module are simllar to those described for the channel 1 input module in Section V. (Refer to paragraph 5-22.) Signature analysis techn lques are used to isolate defective parts on the channel 2 input module. For convenlence, the signature analysis information for the channel 2 input module is included in Section V. (Refer to Tables 5-19, 5-20, 5-21 and 5-22.)

C-44. REPLACEABLE PARTS.

C-45. Table 6-2 ilsts all the replaceable parts and Includes; Reference Symbol, Descrlption, Mfr., Mfr's Part No., and the BEC Part No., for the channel 2 input module which is Identical to the channel 1 input module P/N 042230018.

C-46. SCHEMATICS.

C-47. Refer to Figures 7-6, Sh 1 and 2 input Module Board A6 Schematic Diagrams for the channel 1 and channel 2 schematlics and parts location dlagram.

APPENDIX D
REAR INPUT
OPTION 4200-04

D-1. DESCRIPTION.

D-2. Rear input option 4200-04 provides a second power sensor connector on the rear panel for those applicatlons where sensor connection to the rear of the Instrument may be more convenlent. The second power sensor connector is connected in parallel with the front panel SENSOR connector. Refer to Figure 7-8.

D-3. OPERATION.

D-4. To operate an instrument equipped with the 4200-04 option, connect the power sensor cable to elther the front panel or rear panel input channel i connector, as desired, and affix the shleld supplied with the option to the unused connector. Then, proceed with operation as described in Section ll of the 4200 manual.

NOTE

Do not attempt to use both input connectors at the same time; use only one and make sure that the shield is afflxed to the other.

APPENDIX E

INTERNAL TMA (MATE)
 OPTION 4200-06

E-1. DESCRIPTION.
E-2. The 4200-06 option provides IEEE-488 programming syntax which conforms to MATE System Control Interface Standard. The protocol is the CIIL subset of the ATLAS control language.

E-3. The 4200-06 option consists of the items Ilisted in Table E-l.

E-4. MATE CONFIGURATION.
E-5. The 4200-06 option allows two maln modes of operation, selected by Blt Switch 8 of the Interface Board BIt Switch as Ilsted in Table E-2.

E-6. The MATE/native mode selection is made during power-on initialization. To change mode, the instrument must be turned off before Bit Switch 8 is changed. When power is re-applled, the new mode will be in effect.

E-7. When the 4200-06 powers up in the MATE compatible mode, the active channel is set to the following conditions:
a. dBm Mode
b. Autorange Mode
c. High dB Limit $=99.99$
d. Low dB Llmit $=-99.99$
e. Raw data flag cleared

E-8. While the 4200-06 is in 1EEE-488 LOCAL mode, all panel functions are avallable to the operator. This includes all of the con-

```
ditions preset during power-up. When the
system controller places the 4200-06 Into the
REMOTE mode, the above Inltializations wlli
be restored. All panel controls are lnopera-
tive whlle the 4200-06 is in REMOTE mode.
E-9. The 4200-06 option supports two-channel
operation If the second-channel hardware is
Installed. Attempts to access a non-existent
channel will generate an lllegal channel
error message. The first channel is
addressed as : CHO or :CHOO, and the second
as :CHI or :CHOI.
E-10. OPERATION.
E-11. Users of this option must be famlliar
wlth the MATE standard. Only the specitie
CIIL commands and protocols appllcable to the
4200 are discussed in thls supplement.
E-12. A MATE measurement consists of the
following operations:
\begin{tabular}{ll} 
a. SETUP: & FNC command \\
b. CLOSURE: & CLS command \\
c. INITIATION: & INX command \\
d. RESULT FETCH: & FTH command \\
e. DISCONNECT: & OPN command \\
f. RESET: & RST command
\end{tabular}
E-13. Each of the first three steps (SETUP, CLOSURE and INITIATION) must be done in that sequence. An error message wlll be generated If the requisite prior steps have not been successfully performed.
```

	TABLE E-1. 4200-06 Option Items.			
$1+e m$	P / N	Location	Replaces	P/N
A23	$04223500 A$	A23 Interface Bd.	A23	042317010
$1 C 6$	$53442800 A$	$A 5$ Control Bd.	A51C6	534317000
$1 C 7$	$53442900 A$	A5 Control Bd.	A51C7	534318000

 TABLE E-2. Bit Switch Si Settings.

E-14. SETUP. The SETUP command syntax is as follows:

Note: value $=$ ascil numeric string, fixed or floating point

E-18. If no error is detected whlle parsing the FNC string, the active channel will be set as determined by the :Cth modifier, and the limlt values wlll be effective until a new SETUP or a RESET occurs.

E-19. The following messages may be generated while parsing the SETUP command:
a. No error: $\langle s p\rangle\langle c r\rangle\langle 1 f\rangle$
b. Unrecognized operand: FO7PWMOn (MOD): ILLEGAL NOUN/NOUN MOD. zzZ<cr><|f>
c. Operand out of sequence: FO7PWMOn (MOD): ILLEGAL zzz PRCGRAMMED POWERMETER 〈CT><1f>
d. Missing operand(s) at end of command: FO7PNMON (MOD): ILLEGAL SYNTAX PROGRAMMED POWERMETER <cr><1f>
e. Improper channel command: FOTPWMOn
(DEV): ILLEGAL CHANNEL FROGRAMMED
POWERMETER <cr><If>
f. Maximum voltage out of allowable range:

FO7PWMOn (DEV): ILLEGAL MAXIMUM PROGRAMMED
POWERMETER <cr><1f>

g. Minimum voltage out of allowable range:
FDTFWMOn (MOD): ILLEGAL MINIMUM PROGRAMMED
POWERMETER <cr><<lif>

h. Frequency limit out of allowable range: F07PWMOn (DEY): ILLEGAL FREOUENCY PROGRAMMED POWERMETER <cr><1f>

Notes: <sp> = ascil space
$n=0$ or 1
zzz = unrecognlzed or illegal operand, truncated to 20 char.

E-20. Errors b, c and d are general syntax errors, and may occur durling any lmproperly constructed command string. In the sectlons that follow they will be termed "syntax errors", and will not be separately shown.

E-21. A special form of setup is used to command the auto-zeroing cycle:

FNC ACS ZERP:CH $\langle c r\rangle\langle 1 f\rangle$
E-22. The measurement cycle which follows becomes a dummy measurement during which auto-zeroing occurs. The CLS, INX and FTH operations described below must still be performed to accomplish autozeroing.

E-23. CLOSURE. After successful SETUP, the 4200 must be CLOSED. The command syntax is:

CLS : $\mathrm{CHn}\langle\mathrm{Cr}\rangle\langle\mathrm{lf}$ >

E-24. The channel number must agree with the current active channel, as set by the FNC command string. If it does not, an lllegal channel message will be generated.

E-25. In addition to syntax errors, the following messages may be generated:
a. No error: $\langle S D\rangle\langle C r\rangle\langle 1 f\rangle$
b. Improper channel command: FO7PwMOn (DEV): ILLEGAL CHANNEL PROGRAMMED POWERMETER <Cr><|f>
c. Instrument not SETUP: FO7PWMOn (MOD): POWERMETER NOT SETUP <CR><If〉

E-26. INITIATION. Each measurement must be INITIATED before any result can be obtalned. The command syntax is:

INX POWR <cr><1 f>
E-27. If no error condition is encountered whlle parsing the above command, the 4200 computes the time required to complete the measurement and places the time in the output buffer. The output buffer is enabled, and the controller is expected to read this value and use it to determine its $1 / 0$ timeout limit.

E-28. A measurement is then initiated. During this time, the 4200 is able to accept the follow-on FTH command string, but will not return data untll the measurement is complete.

E-29. A special case for INX is created when the ZERP noun-modifler was used in the FNC command. The time required to complete the autozero cycle will be returned. The result phase (FTH) after autozero is always zero, unless an error is belng reported.

E－30．In addition to syntax errors，the following messages may be generated：
a．No error：\langle sDDdddd＜cr＞＜1f＞
b．Instrument not SETUP：FO7PWMOn（MOD）： POWERMETER NOT SETUP $\langle c r\rangle\langle\mid f\rangle$
c．Instrument not CLOSED：FOTPWMOn（MOD）： POWERMETER NOT CONNECTED＜cr＞＜1f＞

Note：$d=$ ascil numeric digit（0－9）
E－31．RESULT FETCH．The measurement value is requested by the command：

FTH POWR＜cr＞＜lit
E－32．The instrument will determine it a settled reading was possible within the settling time limit reported to the controller during the INX command．The measurement value is tested against the maxi－ mum and minimum limits established during the SETUP command．If no errors occur，the reading is loaded into the output buffer； otherwise，an error message is loaded．

E－33．Execution of the FTH command also returns the 4200 to CLOSED and not－｜NITIATED status．Any number of successive INX－FTH measurement cycles may be performed while still CLOSED．

E－34．In addition to syntax errors，the following messages may be generated：
a．No error：＜sa＞0．ddddEsd＜cr＞＜1f＞
b．Instrument not SETUP；FOTPWMOn（MOD）： POWERMETER NOT SETUP＜cr＞＜｜f＞
c．Instrument not CLOSED：FOTPWMOn（MOD）： POWERMETER NOT CONNECTED＜cr＞＜1f＞
d．Measurement not INITIATED：FOTPWMOn （MOD）：MEASUREMENT NOT INITIATED＜Cr＞＜1F＞
e．Measurement did not settle：FO5PWMOn （DEV）：MEASUREMENT TIMEOUT 〈cr＞〈Tf〉

```
f．Measurement exceeded maximum IImit： FOOPWMON（DEY）：MEASURED POWER GREATER THAN MAXIMUM＜cr＞＜1f＞
```

g．Measurement less than minimum limit： FOIPWMON（DEV）：MEASURED FOWER LESS THAN MINIMUM＜cr＞＜1f＞

Notes：s＝exponent sign，＋／－
E－35．DISCONNECT．The 4200 may be logically disconnected from the test system by the com－ mand：

OPN： $\mathrm{CH} \mathrm{H}\langle\mathrm{cr}><\mathrm{If}\rangle$
E－36．The channel Identiflcation must agree with the currently active channel；otherwise an illeqal channel error will be generated． The channel must have been SETUP prior to lssuing this command．

E－37．After execution of the OPN command，it Is necessary to send the CLS command prior to INX and FTH commands．

E－38．In addition to syntax errors，the following messages may be generated：
a．No error：$\langle s p\rangle\langle c r\rangle\langle\mid f\rangle$
b．Improper channel command：FOTPWMOn （DEY）：ILLEGAL CHANNEL PROGRAMMED POWERMETER＜Cr＞＜1f＞
c．Instrument not SETUP：FO7PWMOn（MOD）： POWERMETER NOT SETUP $\langle C r\rangle\langle 1 \bar{f}\rangle$
E－39．RESET．The RESET command addresses a specific channel，clears any pending error mess－ages and sets the 4200 to not－SETUP sta－ tus．The syntax is：

RST ACS POWR ：CHn $\langle\mathrm{Cr}\rangle\langle 1 f\rangle$
E－40．An illegal channel error message is generated if the channel addressed does not exist．

E－41．The IEEE－488 bus command DCL（Device Clear）will perform a RESET on the currently active channel．

E－42．In addition to syntax errors，the following messages may be generated：
a．No error：$\langle s 0\rangle\langle c r\rangle\langle 1 f\rangle$
b．Improper channel command：FO7PWMOn （DEV）：ILLEGAL CHANNEL PROGRAMMED
POWERMETER＜cr＞＜1f＞
E－43．SELF TEST．Two self－test commands are recognized by the 4200，but the same internal test is done for both．The test is a check－ sum verification of the 4200 program memory．
The command syntax is：
CNF＜cr＞＜｜f＞or $|S T<c r><| t>$
E－44．Each of these commands also does an implied RESET，returning the 4200 to not－SETUP status，and clearing any pending errors prior to self－test．

E－45．In addition to syntax errors，the following messages may be generated：
a．No error：$\langle s p\rangle\langle c r\rangle\langle 1 f\rangle$
b．Checksum error，CNF command：FOTPWMOn （DEY）：CONFIDENCE TEST FAILURE＜cr＞＜1f＞

C．Checksum error，IST command：FOTPWMOn （DEY）：BIT TEST FAILURE RAM／ROM $\langle\overline{C T\rangle\langle\mid t\rangle}$

E－46．status COMmAND．Messages in the out－ put buffer must be enabled prior to being sent to the controller．Except after an INX or FTH command，which impllcitly enable the output buffer，the STA command must be sent to access the current message．When the STA command is received by the 4200，the no－error message is loaded unless an error message is already present，and the buffer is enabled． A subsequent talk command on the IEEE－488 bus will cause the message to be sent to the controller．

APPENDIX E
OPTION 4200-06

E-47. Any error message in the output buffer prevents further loading of the buffer until the message is sent over the bus, or a RESET occurs.

E-48. The syntax for the STATUS command is:
STA<cr><1 f>
E-49. If no error message exists in the output buffer, the following message is generated:
a. No errors: $\langle s p\rangle\langle c r\rangle\langle 1 f\rangle$

E-50. MAINTENANCE.

E-51. To perform any of the maintenance procedures outlined in Section iv of the 4200 Manual, set Interface Board Bit Switch 8 for native mode operation. This will allow IEEE-488 access to Instrument calibration functions. Restore the MATE configuration after maintenance procedures are complete.

E-52. REPLACEABLE ParTS.
E-53. Table 6-2 lists all the replaceable parts and includes; Reference Symbol, Description, Mfr., Mfr's Part No., and the BEC Part No.

E-54. SCHEMATICS.
E-55. Refer to Figures B2, B3, and B4 for the schematics for the 4200-01B Option.

APPENDIX F
REAR INPUT
OPTION 4200-S/17

```
F-1. DESCRIPTION.
```


nOTE

```
The -S/17 option can only be used in conjunction with the -03 option.
F-2. Rear input option 4200-S/17 provides channel inputs on both the front and rear panels so that the sensor connections to the second power sensor connector on the rear panel for those applications where sensor connection to the rear of the instrument may be more convenient. The second power sensor connector is connected in parallel with the front panel SENSCR connector. Refer to Figure 7-8.
```

F-3. OPERATION.
F-4. To operate an instrument equipped with the 4200-S/17 option, connect the power sensor cable to either the front panel or rear panel input channel connector, as desired, and affix the shield supplied with the option to the unused connector. Then, proceed with operation as described in Section ll of the 4200 manual.

NOTE
Do not attempt to use both input connectors at the same time; use only one and make sure that the shield is affixed to the other.

Instruction-manual supplements are issued as required to correct errors in a manual, and to adapt the manual to changes made after its printing.

Make the following additions to the Manual.

1. The following Items have been added to the Model 4200 for the $-5 / 21:$
a. Batterles BT2 and BT3. (2) I. 5 V alkaline batterles replace BTi.

Refer to flgure 1.
b. An Elapsed Time Indicator MI and assoclated 357 k ohm resistor.

Refer to Figure 1.
C. A 1 k ohm resistor ls connected to the recorder output and rear panel ground to provide a 1 full scale output.
2. Extending the RMS measuring range of sensors note.
a. The true RMS detection area of the 4200-4E-S/21 sensor ls from -60 dBm to -20 dBm and -40 dBm to 0 dBm for the 4200-6E sensor. These ranges may be extended by adding attenuation to the sensor input. for each dB of attenuatlon added the RMS range will shlft upwards by i dB. The low end sensitivity will also rise by 1 dB. By adding the 20 dB attenuator $951054 / 2$ supplied in the 4200-S/21 Test Set, the RMS rangeswlll be changed to -40 to 0 dBm for the 4200-4E-S/21 and -20 to +20 dBm for the 4200-6E.
b. To correct the display for the attenuator ln use enter the attenuation value for the frequency of lnterest from the calibration data sheet supplied with the attenuator and then press the REF LEVEL dB key.
C. For example: If the attenuation value at 16 GHz is - 19.85 dB as read from the Callbration Data sheet, press 1, 9, ., 8, 5, CHS, and then press the REF LEVEL dB key.
d. Thls technlque wlll work with any attenuator for whlch absolute attenuatlon values across the frequency range are known. Attenuators are not callbrated with specific sensors and are not required to be matched as palrs.
3. On Page 1-8, Table 1-2, change the 4200-4E-S/21 MAX. SWR spelciflcations to <1. 4 from 4 GHz to 18 GHz .
4. On page 2-2, paragraph 2-7b, replace the following text and table:
b. Recorder Output. Recorder connector j20 (type BNC) on the rear panel provides an analog DC voltage for appllcation to a remote recorder. The output resistance is 1000 ohms. The analog DC voltage is proportional to the following:
(1). In the power mode, it is proportional to displayed power, with 1 volt for fuli scale each range, elther channel.
(2). In the dB mode, it is proportional to displayed dBm with the relationshlp shown below:

Recorder Output

	Serles	Serles	Serles
dBm	$4 / 7 / K / K A / Q$	$5 / 8$	6
	$(v o l t s)$	$(v o l t s)$	$(v o l t s)$
+30	-	-	
+20	-	.9	.9
+10	.9	.8	.8
0	.8	.7	.7
-10	.7	.5	.6
-20	.6	.4	.5
-30	.4	.3	.4
-40	.3	.2	.3
-50	.2		.2
-60			

```
5. On Page 3-11, paragraph 3-33, replace the following text:
b. In the dB mode, the DC output level is proportional to dBm according to the
formula (Series 4/7/K/KA/Q Sensors)
    VOUT=(.8 + (Bm) volts
    Example: The voltage output at - 20
            dBm would be:
                        (.8+\frac{-20)}{100}}\mathrm{ volts=.6 volts
This output is a function of dBm only, but is effected by CAL FACTOR entrles.
c. In the Channel-3 mode of operation (Option -03), the recorder output is pro-
portional to the difference in dB of channel i minus Channel 2. This output is
effected by both the callbration factors and the dB reference levels entered in
each channel. The equation is:
    RECORDER OUT (VOLTS)
=(dBCh.1 +dB CAL FACT CH1 - dB REF.Ch.1) - (dBCh. 2 +dB CAL FACT CHZ +dB REF.Ch. 2
Or, equivalent:
    RECORDER OUT (VOLT) = dB disolay 
Valld recorder outputs wlll be obtalned for display indlcations of - 80 dB (0
volts) to +30 dB (1.1 volts).
6. On Page 5-22, paragraph 5-34, replace the followlng text:
e. With l.000 mW Indlcated on the LED display, check the indication on the
digital multimeter; it should be.98 to l.00 volts. lf the indication ls
correct, proceed directly to step h; if the indication is incorrect, proceed to
step f.
f. If the digltal multimeter indlcation in preceding step e was incorrect, set
the control board blt swltch to CALIBRATE MODE 1, Refer to flgure 5-3) and press
the dB LIMITS LO key on the keyboard. The LED display wlll show a gain modifler
of approximately 3600. Calculate a revised galn modifler value to obtaln the
requlred correction. For example: lf the digital multimeter indication were. . 90
valts (0.4% low) and the dB LIMiTS LO key recalled a galn modifler of 3500, the
revised galn modifler value would be:
    1.004 \times 3500=3514.
Enter this revised gain modifler value by pressing the following keys on the
keyboard:
3, 5, 1, 4
dB LIMITS 10
dB LIMITS LO (revised value should appear on the LED display)
9. Reset the control board bit swltch to OPERATE MODE O. Refer to Figure 5-3. Note the indication on the digital multimeter; it should be 98 to 1.00 volts. Repeat steps fand \(g\), lf necessary, untll the correct indication ls obtalned.
h. Set the power meter callbrator output to 0.126 mW , and observe the indications on the instrument LED display and on the digital multimeter. The millivolt indication on the digital multimeter should equal the value shown on the LED display \(\pm\) count. If the digltal multimeter indication is Incorrect, adjust potentlometer \(R 55\) on the input module board as required to provide the proper digital multimeter Indication.
```


SAMPLE CALIBRATION CERTIFICATE

GロONTQN ELECTFONIES CORF -

TNST SERTAL 㧣 2E9519EC -TVFE: $\quad / 16$

EFFOMS: $14 \mathrm{BC}, 36 \mathrm{EC}$, and 32 ZEC used in the DiA option
This is a step by step procedure for reenterimg the calibration date into the NON VOLATILE MEMOFY of this BODNTON ELECTFONICS model 4200 F.F. MICFOWATTMETEF.

Cere should be taken to make sure the EIT SWITCH is configured per instructions. The BIT SWITCH is located under the top cover of the 4200 in the rear left corner. Also be certain that the numbers you enter agree ExACTLY with the numbere om the printout.

Deta is entered TOF TO BOTTOM $\angle E F T$ TO FiGHT. If a mistake is made depress the GLEAR BuTTON and start at the top of the entry again.

NOTE: C.F. dE IS A DEFFESSTON OF THE GAL FAC dB BUTTON. F.L. AB IS A DEFRESSTON OF THE REF LVL AB BUTTON.

BIT SWITCH 1 - OFEN, EIT SWITCH $2-$ CLOSED

1	3020	10000	0	1	2	3	4	5	6
CHNL	LO	AUTO	HOLD						
			1001	1001	998	995	990	1000	994
			R.L.dB	R.L.dB	R.L.dE	R.L.dB	F.L.dE	F.L.dE	R.L.dB

BIT SWITCH 1 - OFEN, EIT SWITCH $2 \cdots$ CLOSED

1	5 S	1000	2
SENS	HI	C.F. $\mathrm{F}_{\text {d }}$	CHz

ETT EWTTCH $1 . C^{-1} O S E D, ~ B I T$ SWITCH $2 \cdots$ OFEN

11	12	13	1.4	15	16	17	18	17	0
AUTO									
11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	18.0	
GHz	6Hz	CHz	OH 2	GHz	GHz	GHz	CHz	GHz	
.68	. 59	$\times 7$. 16	. 20	.19	0.00	.18	. 18	
C.F.dE	E.F. CB	$C . F . d B$	C.F. FB	CHS	CHS	C.F. $\mathrm{F}_{\text {d }} \mathrm{C}$	CHS	CHS	

GIT SWITCH $1-$ CLOSED, ETT SWTTCH $2-$ CLOSED

SAMPLE CALIBRATION CERTIFICATE

BOONTON ELECTRONICS CORP. DATE: $3 / 3 / 87$

SENSOR MOOEL: 6E-5/16
SERIAL NUMBER: 13525

FREO	REF COEFF	SWR	CAL FAC
(GHz)	(RHO)		(dB)
1.00	0.012	1.02	0.13
2.00	0.007	1.01	0.33
3.00	0.018	1.03	0.44
4.00	0.026	1.05	0.43
5.00	0.028	1.05	0.26
6.00	0.021	1.04	0.55
7.00	0.024	1.04	0.63
8.00	0.030	1.05	0.79
9.00	0.023	1.04	0.87
10.00	0.005	1.01	0.78
11.00	0.010	1.01	0.68
12.00	0.005	1.00	0.39
13.00	0.019	1.03	0.37
14.00	0.028	1.05	0.16
15.00	0.033	1.05	-0.20
16.00	0.049	1.10	-0.19
17.00	0.065	1.13	-0.00
18.00	0.046	1.09	-0.18

BOONTON CALIBRATOR

DC Range Calibrator

Model 2500

- Accurate, convenient, and self contained.
- Designed for calibrating the Model 4200 and 9200 series instruments.

Description

The Model 2500 is a precise, highly stable DC range calibrator that provides the voltage levels and source resistances that are necessary to calibrate the Model 4200 and 9200 series instruments.

Specifications

Ranges and Outputs: Range	Output Voltage
0	$9 \mu \mathrm{~V}$
1	$90 \mu \mathrm{~V}$
2	$900 \mu \mathrm{~V}$
3	9 mV
4	90 mV
5	900 mV
6 A	1.8 V
6B	4.5 V

Accuracy: $\pm 0.15 \%$, all ranges.

Source Resistance:

Low goost to 1800s.
$300 \mathrm{k} \Omega \quad 300 \mathrm{k} \Omega \pm 2 \%$.
$500 \mathrm{k} \Omega \quad 500 \mathrm{k} \Omega \pm 2 \%$.

Temperature influence:

Operating: $\quad 21^{\circ}$ to $25^{\circ} \mathrm{C}$.
Non-operating: $\quad-20^{\circ}$ to $75^{\circ} \mathrm{C}$.
Power Consumption: 7 VA; 100, 120, 220, $240 \mathrm{~V} \pm 10 \%, 50$ to 400 Hz .
Dimensions: 5.2 in (13.2 cm) high, $8.3 \mathrm{in}(21.1 \mathrm{~cm})$ wide, and $11.5 \mathrm{in}(29.2$ cm) deep.

Weight: $5.9 \mathrm{lbs}(2.7 \mathrm{~kg})$.

Boonton
 Model 25A

PURPOSE AND OSE OF EQUIPMENT.

The Model 25A is a precision, solid-state instrument designed to provide accurate 1 MHz signal levels required in the calibration of all Boonton RF microwattmeters, Model 41 and 42 series. Full scale and incremental values for each range are provided, allowing verification and calibration of both full scale and down scale indications.

TRACEABILITY.

The Model 25A is factory calibrated using instrumentation whose accuracy is traceable to the National Bureau of Standards. Feriodic calibration of 0 dBm and -9 dBm outputs is accomplished using thermal transfer techniques. The accuracy of other full scale and down scale ranges is determined by precision attenuators which are tested at the factory and should not require periodic calibration.

PERFORMANCE SPECIFICATIONS	
Parameter	Specifications
Power Ranges:	Full scale $-60,-50,-40,-30,-20,-10,0, \pm 10, \pm 20 \mathrm{dBm}$ Down Scale 0 to -9 dB in 1 dB steps
Output Power Accuracy:	$\pm 0.05 \mathrm{~dB}$ (at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 90 days, 15 minute warm-up)
Temperature Influence:	$\pm 0.001 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ from 0 to $50^{\circ} \mathrm{C}$
Harmonic Distortion:	<0.15\% total harmonic distortion
Output Frequency:	1 MHz , crystal controlled
Output Impedance:	50 ohms $\pm 0.5 \%$
Temperature:	Operating 0 to $50^{\circ} \mathrm{C}$ Non-operating -20 to $75^{\circ} \mathrm{C}$
Input Power:	100, 120, 200, 240 VAC $\pm 10 \% 50$ to $400 \mathrm{~Hz}, 7 \mathrm{VA}$
Dimensions:	5.2" high (without feet), 8.3" wide, 11.5 " deep
Weight:	7.75 lbs. (3.6 kg)

BOONTON ELECTRONICS CORPORATION

[^0]: :Increane level by 10 dB for 8 E sensor.

